www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - die 2. ableitung bilden
die 2. ableitung bilden < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

die 2. ableitung bilden: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:07 Mi 10.10.2007
Autor: weissnet

HAllo!
ich muss die abletungen von dieser funktion bilden:

f(x)= (x hoch2) +1 /x+1

die erste ableitung habe ich schon gebildet, ich bin mir auch ganz sicher , dass es richtig ist. aber bei der zweiten ableitung bin ich mir nicht so sicher. kann mir bitte jmd. sagen, ob das richtig ist?

2. Ableitung: [mm] (2x^2)+(4x^2)+2-((2x^3+(4x^2)-2x) [/mm] ) / [mm] (x+1)^3 [/mm]



        
Bezug
die 2. ableitung bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 11:18 Mi 10.10.2007
Autor: koepper


> HAllo!
>  ich muss die abletungen von dieser funktion bilden:
>  
> f(x)= (x hoch2) +1 /x+1
>  
> die erste ableitung habe ich schon gebildet, ich bin mir
> auch ganz sicher , dass es richtig ist. aber bei der
> zweiten ableitung bin ich mir nicht so sicher. kann mir
> bitte jmd. sagen, ob das richtig ist?

> 2. Ableitung: [mm](2x^2)+(4x^2)+2-((2x^3+(4x^2)-2x)[/mm] ) /
> [mm](x+1)^3[/mm]

Hallo,

wenn das alles ist, was du willst. Nichts leichter als das.

Es ist nicht richtig.

Gruß,Will






P.S: Der Zähler ist falsch. Dort muss eine einfache Zahl stehen.
Wenn du auch deinen Rechenweg postest, dann können wir dir sagen, wo der Fehler liegt.


Bezug
                
Bezug
die 2. ableitung bilden: korrektur
Status: (Frage) beantwortet Status 
Datum: 11:30 Mi 10.10.2007
Autor: weissnet

also bei der 1. ableitung habe ich

[mm] (x^2)+2x-1 [/mm] / [mm] (x+1)^2 [/mm]

und nun die 2. ableitung:
f"(x)= [mm] (2x+2)(x+1)-((x^2) +2x-1))*(2(x+1)^1 [/mm] )*1 / [mm] (x+1)^4 [/mm]

      =(2x+2) [mm] (x+1)-((x^2)+2x-1))*2x /(x+1)^3 [/mm]

      = [mm] (2x^2)+2x+2x+2-((2x^3)+ (4x^2)-2x) [/mm] / [mm] (x+1)^3 [/mm]

Bezug
                        
Bezug
die 2. ableitung bilden: korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:42 Mi 10.10.2007
Autor: weissnet

kann mir bitte jmd sagen , wo ich hier einen fehler gemacht habe?

Bezug
                        
Bezug
die 2. ableitung bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 11:51 Mi 10.10.2007
Autor: angela.h.b.

Hallo,

wenn Du die notwendigen Klammern setzen oder Bruchstriche verwenden würdest, wäre das hilfreich.

> also bei der 1. ableitung habe ich
>  
> [mm](x^2)+2x-1[/mm] / [mm](x+1)^2[/mm]

Du willst also [mm] f'(x)=\bruch{x^2+2x-1}{(x+1)^2} [/mm] ableiten.

> und nun die 2. ableitung:
>  f"(x)= [mm](2x+2)(x+1)^2-((x^2) +2x-1))*(2(x+1)^1[/mm] )*1 / [mm](x+1)^4[/mm]
>  
> =((2x+2) [mm](x+1)-((x^2)+2x-1))*2x) /(x+1)^3[/mm]

Das x vorm Divisionsstrich ist verkehrt (zuviel), ich nehme an, daß es ein Schreibfehler beim Kürzen ist.

Gruß v. Angela


Bezug
                                
Bezug
die 2. ableitung bilden: rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:01 Mi 10.10.2007
Autor: weissnet

ich verstehe das irgendwie nicht...kannst du mir bitte helfen??

Bezug
                                        
Bezug
die 2. ableitung bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 Mi 10.10.2007
Autor: angela.h.b.


> ich verstehe das irgendwie nicht...kannst du mir bitte
> helfen??

Hallo,

unter "das irgendwie" kann ich mir verflixt wenig vorstellen.

Ich glaube, daß es schon sehr helfen würde, wenn Du alles vernünftig und übersichtlich aufschriebest.

Du hast lediglich beim Kürzen einen Fehler gemacht.

Abgeleitet werden soll  $ [mm] f'(x)=\bruch{x^2+2x-1}{(x+1)^2} [/mm] $ .

Du schriebst:
>>> und nun die 2. ableitung:
>>>  f"(x)= $ [mm] (2x+2)(x+1)^2-((x^2) +2x-1))\cdot{}(2(x+1)^1 [/mm] $ )*1 / $ [mm] (x+1)^4 [/mm] $
>>>  
>>> =((2x+2) $ [mm] (x+1)-((x^2)+2x-1))\cdot{}2x) /(x+1)^3 [/mm] $

Ins Leserliche übersetzt steht dort

[mm] f"(x)=\bruch{(2x+2)(x+1)^2-(x^2 +2x-1))\cdot{}(2(x+1)^1*1)}{ (x+1)^4}=\bruch{(2x+2)(x+1)-(x^2+2x-1)*2x}{(x+1)^3} [/mm]

Das letzte x auf dem Bruchstrich ist zuviel. Du hast doch  (x+1) gekürzt.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de