www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - diff.gleichung
diff.gleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

diff.gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Sa 20.09.2008
Autor: koko

hallo leute,

hab da ne differentialgleichung, jedoch weis ich nicht wie dies zu lösen ist.

könnte es ja wie ne seperable diff.gl. behnadeln jedoch ist sie nicht linear.

also hier das bsp.

[mm] y'=y^2/x^2-2, [/mm]

ist das be bernoulli gleichung? nach meinen überlegungen nicht oder?

wäre dankbar wenn mir jemand helfen könnte

mfg

        
Bezug
diff.gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:49 Sa 20.09.2008
Autor: Zwerglein

Hi, koko,

hast Du's schon mit der Substitution z = [mm] \bruch{y}{x} [/mm] versucht?

mfG!
Zwerglein

Bezug
                
Bezug
diff.gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:56 Sa 20.09.2008
Autor: max3000

Genau.
"ÄhnlichkeitsDGL" ist hier das Stichwort.

Bezug
        
Bezug
diff.gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 Sa 20.09.2008
Autor: MathePower

Hallo koko,

> hallo leute,
>  
> hab da ne differentialgleichung, jedoch weis ich nicht wie
> dies zu lösen ist.
>  
> könnte es ja wie ne seperable diff.gl. behnadeln jedoch ist
> sie nicht linear.
>  
> also hier das bsp.
>  
> [mm]y'=y^2/x^2-2,[/mm]
>  
> ist das be bernoulli gleichung? nach meinen überlegungen
> nicht oder?


Eine Bernoulli DGL ist das nicht.

Befolge hier den Tip von  Zwerglein.


>  
> wäre dankbar wenn mir jemand helfen könnte
>  
> mfg

Gruß
MathePower

Bezug
                
Bezug
diff.gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Sa 20.09.2008
Autor: koko

okey danke,

höre die "ähnlichkeits-dgl" zum ersten mal, habs aber natürlich mit der substitution probiert, weis aber nicht obs richtig ist.

ich komme dann auf [mm] dz/(z^2-z-2)=dx/x......ist [/mm] das richtig?

und wenn ja...wie fahre ich weiter fort? ich glaub man sollte integrieren...nur weis ich nicht ganz wie...ihr seht schon, ist einbischen neuland für mich.

danke im voraus,

mfg

Bezug
                        
Bezug
diff.gleichung: Partialbruchzerlegung
Status: (Antwort) fertig Status 
Datum: 20:37 Sa 20.09.2008
Autor: Loddar

Hallo koko!


Vor dem Integrieren der linken Seite musst Du zunächst zerlegen [mm] ($\rightarrow$ [/mm] MBPartialbruchzerlegeung):
[mm] $$\bruch{1}{z^2-z-2} [/mm] \ = \ [mm] \bruch{1}{(z-2)*(z+1)} [/mm] \ = \ [mm] \bruch{A}{z-2}+\bruch{B}{z+1}$$ [/mm]

Gruß
Loddar


Bezug
                                
Bezug
diff.gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:01 So 21.09.2008
Autor: koko

hallo nochmals,

warum kann ich eigentlich bei der dgl [mm] y`=y^2/x^2-2 [/mm] nicht nach dem prinzip der seperablen dgl vorgehen?

mfg

Bezug
                                        
Bezug
diff.gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:17 So 21.09.2008
Autor: leduart

Hallo
weils nicht geht! Wie willst du es denn machen?
waere die Dgl [mm] :y'=y^2/(x^2-2) [/mm] dann koenntest du.
Grus leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de