www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - differenzierbar
differenzierbar < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

differenzierbar: differenzierbar?
Status: (Frage) beantwortet Status 
Datum: 18:51 Di 18.12.2007
Autor: Kreide

Aufgabe
Sei g: R-->R und [mm] g(x)=\wurzel{|x|} [/mm]

ist g stetig und differenzierbar?

wenn man gezeigt hat, dass g differenzierbar ist, ist sie jaa auch stetig...

um zu zeigen, dass sie differeznierbar ist...
[mm] \bruch{\wurzel {|x+h|}-\wurzel{|x|}}{h} [/mm]

wie kann man denn die wurzel auf dem zähler zusammenziehen?

        
Bezug
differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Di 18.12.2007
Autor: schachuzipus

Hallo Kreide,

das mit den Beträgen ist schwierig.

Ich würde eine Fallunterscheidung bzgl. $x$ machen:

(1) x>0

(2) x<0

(3) x=0

Fall (1) und (2) sollten schnell verarztet sein, aber Fall (3) schaue dir genauer an.

Ist das Ding in 0 diffbar? Oder nur stetig? Oder nix von beidem?

Denke an sowas wie links- und rechtsseitiger limes des Differenzenquotienten ....


LG

schachuzipus


Bezug
                
Bezug
differenzierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:12 Do 20.12.2007
Autor: MepH

Hallöle,

da ja gilt:

[mm] g(x)=\begin{cases} \wurzel{x}, & \mbox{für } x \mbox{>0} \\ 0, & \mbox{für } x \mbox{=0} \\ \wurzel{-x}, & \mbox{für } x \mbox{<0} \end{cases} [/mm]

bringt mich z.B. linksseitiger Grenzwert bei der Stelle x=0 zu:

[mm] \limes_{x\rightarrow 0^{-}} \bruch{\wurzel{-y}}{y} [/mm]

Wieso kann ich sagen, dass das gegen [mm] -\infty [/mm] geht (was es denke ich tut)?

Bezug
                        
Bezug
differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Do 20.12.2007
Autor: schachuzipus

Hallo MepH,


> Hallöle,
>
> da ja gilt:
>  
> [mm]g(x)=\begin{cases} \wurzel{x}, & \mbox{für } x \mbox{>0} \\ 0, & \mbox{für } x \mbox{=0} \\ \wurzel{-x}, & \mbox{für } x \mbox{<0} \end{cases}[/mm] [ok]
>  
> bringt mich z.B. linksseitiger Grenzwert bei der Stelle x=0
> zu:
>  
> [mm]\limes_{x\rightarrow 0^{-}} \bruch{\wurzel{-\red{x}}}{\red{x}}[/mm]
>  
> Wieso kann ich sagen, dass das gegen [mm]-\infty[/mm] geht (was es
> denke ich tut)?

Ganz einfach geht es mit der Regel von de l'Hopital:

Für [mm] $\lim\limits_{x\uparrow 0}\frac{\sqrt{-x}}{x}$ [/mm] hast du den unbestimmten Ausdruck [mm] $\frac{0}{0}$ [/mm]

Also kannst du die besagte Regel anwenden.

Alternativ kannst du [mm] $\frac{\sqrt{-x}}{x}$ [/mm] erweitern mit [mm] $\blue{\sqrt{-x}}$ [/mm]

Das gibt [mm] $\frac{\sqrt{-x}}{x}=\frac{\sqrt{-x}\cdot{}\blue{\sqrt{-x}}}{x\cdot{}\blue{\sqrt{-x}}}=\frac{\sqrt{(-x)(-x)}}{x\sqrt{-x}}=\frac{\sqrt{x^2}}{x\sqrt{-x}}=\frac{|x|}{x\sqrt{-x}}=\frac{-x}{x\sqrt{-x}}=\frac{-1}{\sqrt{-x}}$ [/mm]

und das strebt für [mm] $x\uparrow [/mm] 0$ gegen [mm] $\frac{-1}{0}=-\infty$ [/mm]


Gruß

schachuzipus

Bezug
        
Bezug
differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Di 18.12.2007
Autor: max3000

Hi.

Etwas hätte ich zu meckern. Du sagtest:
"Wenn die Funktion differenzierbar ist, dann ist sie ja auch stetig". Das ist falsch.

zum Beispiel:

[mm] f(x)=\begin{cases} x, & \mbox{für } x<0 \\ x+1, & \mbox{für } x\ge0 \end{cases} [/mm]

Es folgt f'(x)=1 für alle x.
Die Funktion ist also differenzierbar, obwohl eine Unstetigkeit in Punkt 0 vorliegt.

Bezug
                
Bezug
differenzierbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:51 Di 18.12.2007
Autor: schachuzipus

Hallo Max,

das stimmt so nicht.

Die Funktion f ist in 0 nicht diffbar !!

Betrache mal den rechtsseitigen limes [mm] $\lim\limits_{x\downarrow 0}\frac{f(x)-f(0)}{x-0}=\lim\limits_{x\downarrow 0}\frac{x+1-1}{x}=1$ [/mm]

und im Vgl. den linksseitigen

[mm] $\lim\limits_{x\uparrow 0}\frac{f(x)-f(0)}{x-0}=\lim\limits_{x\uparrow 0}\frac{x-1}{x}=\lim\limits_{x\uparrow 0}\frac{x\left(1-\frac{1}{x}\right)}{x}=\lim\limits_{x\uparrow 0}\left(1-\frac{1}{x}\right)=-\infty$ [/mm]

Also war das kein Gegenbsp.

Aus Diffbarkeit folgt immer Stetigkeit


LG

schachuzipus

Bezug
                        
Bezug
differenzierbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:59 Di 18.12.2007
Autor: max3000

Okay.
Dann hab ich vielleicht wirklich was falsch verstanden.
Zum Glück hab ich erst im Februar meine Analysis Vordiplomprüfung ^^.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de