www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - differenzierbare Funktionen
differenzierbare Funktionen < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

differenzierbare Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:38 So 07.03.2010
Autor: Karl_Pech

Hallo Zusammen,


Aufgabe
Sei [mm]\textstyle L^2(\mathbb{R}):=\left\{f:\mathbb{R}\to\mathbb{C}\left|f\texttt{ messbar und }\int_{\mathbb{R}}{\left|f(t)\right|^2\operatorname{d}\!t}<\infty\right.\right\}[/mm]. Sei [mm]f\in L^2(\mathbb{R})[/mm]. Dann gilt:

(1) Ist [mm]f\![/mm] differenzierbar mit [mm]f'\in L^2(\mathbb{R})[/mm]. Dann gilt: [mm]\widehat{f'}(\omega)=2\pi\!\operatorname{i}\omega\hat{f}(\omega)[/mm].

(2) Ist [mm]\hat{f}[/mm] differenzierbar, so gilt mit [mm]g(t):=tf(t)\![/mm]: [mm]\hat{f}'(\omega)=-2\pi\!\operatorname{i}\hat{g}(\omega)[/mm].


(1) Es gilt wegen der Produktregel:


[mm]\frac{\partial}{\partial t}f(t)e^{-2\pi\!\operatorname{i}\omega t}=f'(t)e^{-2\pi\!\operatorname{i}\omega t}-2\pi\!\operatorname{i}\omega f(t)e^{-2\pi\!\operatorname{i}\omega t}[/mm]


Also gilt im Umkehrschluss:


[mm]f(t)e^{-2\pi\!\operatorname{i}\omega t}=\widehat{f'}(\omega) -2\pi\!\operatorname{i}\omega \hat{f}(\omega)\Leftrightarrow 2\pi\!\operatorname{i}\omega \hat{f}(\omega) = \widehat{f'}(\omega)-f(t)e^{-2\pi\!\operatorname{i}\omega t}[/mm]

Wie kann ich hier den zweiten Term im zweiten Teil der Gleichung "loswerden"? Denn sonst gilt die Aussage nur für [mm]f(t)=0\![/mm].


(2) Hier habe ich ein ähnliches Problem wie bei (1):


[mm]\frac{\partial}{\partial\omega}-f(t)e^{-2\pi\!\operatorname{i}\omega t}=-e^{-2\pi\!\operatorname{i}\omega t}-f(t)(-2\pi\!\operatorname{i}t)e^{-2\pi\!\operatorname{i}\omega t}[/mm]


Also gilt im Umkehrschluss:


[mm]-f(t)e^{-2\pi\!\operatorname{i}\omega t}=-\int{e^{-2\pi\!\operatorname{i}\omega t}\operatorname{d}\!\omega}-(-2\pi\!\operatorname{i})\int{tf(t)e^{-2\pi\!\operatorname{i}\omega t}\operatorname{d}\!\omega}[/mm]


Hier weiß ich leider nicht weiter. Bei der Fouriertransformation wird doch nach [mm]t\![/mm] integriert, oder?



Danke für die Hilfe!

Viele Grüße
Karl




        
Bezug
differenzierbare Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:57 So 07.03.2010
Autor: Doing

Hallo!

Ich weiß ehrlich gesagt nicht so recht, was du da grade machst.
Die Fourier-Transformierte zu f lautet
[mm]\hat{f} (\omega)= \integral_{-\infty}^{\infty}{f(t)exp(-i2\pi \omega t) dt} [/mm]
Die sollst du jetzt differenzieren. Den Integranden nach t abzuleiten bringt dich nicht weiter.

Gruß,
Doing


Edit: Entschuldige, ich hab da wohl was missverstanden. Du willst die Fourier-Transformierte der Funktion f' bestimmen stimmts?
In dem Falle kannst du diese sofort berechnen (sofern du weißt dass diese auch existiert usw.), und zwar mit partieller Integration.

Und bei der b) soll wohl die Ableitung der Fouriertransformierten bestimmt werden. Hier musst du begründen, wieso du unter dem Integral differenzieren darfst.

Bezug
                
Bezug
differenzierbare Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 Mo 08.03.2010
Autor: Karl_Pech

Hallo Doing,


> Edit: Entschuldige, ich hab da wohl was missverstanden.
> Du willst die Fourier-Transformierte der Funktion f'
> bestimmen stimmts?
> In dem Falle kannst du diese sofort berechnen (sofern du
> weißt dass diese auch existiert usw.), und zwar mit
> partieller Integration.


Ich habe es jetzt mit partieller Integration versucht. Da bleibt leider ein störender Term übrig:


[mm]\int_{\mathbb{R}}{f'(t)e^{-2\pi\!\operatorname{i}\omega t}\operatorname{d}\!t}= \lim_{B\to\infty}{\left(\int_{-B}^0{\underbrace{f'(t)}_{=:u'}\underbrace{e^{-2\pi\!\operatorname{i}\omega t}}_{=:v}\operatorname{d}\!t}+ \int_0^B{\underbrace{f'(t)}_{=:u'}\underbrace{e^{-2\pi\!\operatorname{i}\omega t}}_{=:v}\operatorname{d}\!t}\right)}[/mm]

[mm]=\lim_{B\to\infty}{\left(\left[f(t)e^{-2\pi\!\operatorname{i}\omega t}\right]_{-B}^0 - \int_{-B}^0{f(t)(-2\pi\!\operatorname{i}\omega)e^{-2\pi\!\operatorname{i}\omega t}\operatorname{d}\!t} + \left[f(t)e^{-2\pi\!\operatorname{i}\omega t}\right]_0^B - \int_0^B{f(t)(-2\pi\!\operatorname{i}\omega)e^{-2\pi\!\operatorname{i}\omega t}\operatorname{d}\!t}\right)}[/mm]

[mm]=\lim_{B\to\infty}{\left(f(0) - f(-B)e^{2\pi\!\operatorname{i}\omega B} + f(B)e^{-2\pi\!\operatorname{i}\omega B} - f(0)\right)} + 2\pi\!\operatorname{i}\omega\lim_{B\to\infty}{\left(\int_{-B}^0{f(t)e^{-2\pi\!\operatorname{i}\omega t}\operatorname{d}\!t} + \int_0^B{f(t)e^{-2\pi\!\operatorname{i}\omega t}\operatorname{d}\!t}\right)}[/mm]

[mm]= \textcolor{red}{\lim_{B\to\infty}{\left(f(B)e^{-2\pi\!\operatorname{i}\omega B} - f(-B)e^{2\pi\!\operatorname{i}\omega B}\right)}} + 2\pi\!\operatorname{i}\omega \hat{f}(\omega)[/mm]


Wie kann ich zeigen, daß der rote Term 0 ist, um auf die zu beweisende Aussage zu kommen?


> Und bei der b) soll wohl die Ableitung der Fouriertransformierten bestimmt werden. Hier musst du begründen, wieso du unter dem Integral
> differenzieren darfst.


Laut der Aufgabenstellung ist [mm]\hat{f}[/mm] differenzierbar. Reicht das so als Begründung, oder muß man da noch mehr schreiben? Jedenfalls rechne ich dann folgendermaßen:


[mm]\hat{f}'(\omega) = \int_{\mathbb{R}}{\frac{\partial}{\partial \omega}{f(t)e^{-2\pi\!\operatorname{i}\omega t}}\operatorname{d}\!t}[/mm]

[mm]= \int_{\mathbb{R}}{\left(e^{-2\pi\!\operatorname{i}\omega t} + f(t)(-2\pi\!\operatorname{i}t)e^{-2\pi\!\operatorname{i}\omega t}\right)\operatorname{d}\!t}=\int_{\mathbb{R}}{e^{-2\pi\!\operatorname{i}t}\operatorname{d}\!t}-2\pi\!\operatorname{i}\int_{\mathbb{R}}{tf(t)e^{-2\pi\!\operatorname{i}\omega t}\operatorname{d}\!t}[/mm]

[mm]= \textcolor{magenta}{\int_{\mathbb{R}}{e^{-2\pi\!\operatorname{i}t}\operatorname{d}\!t}}-2\pi\!\operatorname{i}\hat{g}(\omega)[/mm]


Wie kann ich zeigen, daß der Magenta-Term 0 ist, um die Aussage zu beweisen?



Danke!

Viele Grüße
Karl




Bezug
                        
Bezug
differenzierbare Funktionen: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 21:08 Mo 08.03.2010
Autor: SEcki


> Wie kann ich zeigen, daß der rote Term 0 ist, um auf die
> zu beweisende Aussage zu kommen?

EDIT: Das ist doch im Allgemeinen nicht 0 - alle Beweise, die ich finden konnte, gingen davon aus, dass der Term gegen 0 geht. Ich schaue mal weiter nach ...

SEcki

Bezug
                        
Bezug
differenzierbare Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Sa 03.04.2010
Autor: mathfunnel

Hallo [mm] Karl,\\ [/mm]
zu Aufgabe [mm] (1):\\ [/mm]
Der Term $ [mm] \textcolor{red}{\lim_{B\to\infty}{\left(f(B)e^{-2\pi\!\operatorname{i}\nu B} - f(-B)e^{2\pi\!\operatorname{i}\nu B}\right)}}$ [/mm] ist gleich Null, da [mm] $f(\pm B)\rightarrow [/mm] 0$ für $B [mm] \rightarrow \infty$, [/mm] wegen der in der Aufgabe vorausgesetzten Quadratintegrierbarkeit ($f [mm] \in L^2(\mathbb{R})$) [/mm] und weil der Exponentialterm auf [mm] $\mathbb{R}$ [/mm] beschränkt [mm] ist.\\ [/mm]
zu Aufgabe [mm] (2)\\ [/mm]
Der "'Magenta-Term"' ist einfach ein (wohl beim Ableiten entstandener) Fehler. Es gilt:
$ [mm] \hat{f}'(\omega) [/mm] = [mm] \int_{\mathbb{R}}{\frac{d}{d \omega}{f(t)e^{-2\pi\!\operatorname{i}\omega t}}\operatorname{d}\!t} [/mm] = [mm] -2\pi\!\operatorname{i}\int_{\mathbb{R}}{t {f(t)e^{-2\pi\!\operatorname{i}\omega t}}\operatorname{d}\!t} [/mm] $.
Noch eine Bemerkung: Die Möglichkeit der Vertauschung von uneigentlichem Integral und Ableitung, wird z.B. durch die Bedingung der absoluten Integrierbarkeit von $tf(t)$ auf [mm] $\mathbb{R}$ [/mm] sichergestellt. Ich vermute, dass diese oder eine ähnliche Voraussetzung in der Aufgabe fehlt.

Gruß mathfunnel

Bezug
                                
Bezug
differenzierbare Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:37 So 04.04.2010
Autor: Karl_Pech

Hallo Zusammen,


Danke für eure Hilfe bei dieser Aufgabe. Den Rechenfehler beim Magentaterm habe ich übersehen. Danke für den Hinweis mathfunnel!



Grüße
Karl




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de