www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - diskrete Zufallsvariable
diskrete Zufallsvariable < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

diskrete Zufallsvariable: Frage
Status: (Frage) beantwortet Status 
Datum: 08:48 Mo 13.06.2005
Autor: aga77kn

Servus,

diese Frage habe ich in keinem anderen Forum gestellt. Ich komme mit folgendem nicht so recht vorran und wäre über Hilfe dankbar:

Ich verstehe den Umgang mit diskreten ZVA nicht so richtig. Ich weiß das die Verteilungsfunktion [mm] F_{x} [/mm] dann stückweise konstant ist.

Kann mir nun jemand dabei helfen, je ein Beispiel für diskrete ZVA zu finden, die genau endlich bzw. genau abzählbar unendlich viele Werte in  [mm] \IR [/mm] annehmen, und für diese dann die Wahrscheinlichkeitsverteilungen  [mm] P_{x} [/mm] und die Verteilfungsfunktionen [mm] F_{x} [/mm] bestimmen.

        
Bezug
diskrete Zufallsvariable: Antwort
Status: (Antwort) fertig Status 
Datum: 12:54 Mo 13.06.2005
Autor: abadonna

Hallo!

Habe was im meinem schlauen Buch gefunden, vielleicht hilft dir das:

1. Beispiel: Wertevorrat endlich

X sei die Augenzahl beim Werfen eines idealen Würfels. Die Verteilung von X lautet (i,1/6), i=1,2,3,4,5,6. Da die ZV X keine Werte annehmen kann, die kleiner als 1 sind, gilt F(x)=0 für x<1. Für x=1 erhalten wir den Fktwert F(1)=P(X [mm] \le [/mm] 1)=P(X=1)=1/6. Für alle Werte x mit 1 [mm] \le [/mm] x < 2 ergibt sich ein konstanter Fktwert F(x)=P(X=1)=1/6. An der Stelle x=2 kommt die Wkt. P(X=2)=1/6 hinzu. Es gilt also P(X [mm] \le [/mm] 2)=2/6. Für 2 [mm] \le [/mm] x < 3 gilt F(x)=2/6. Entsprechend erhalten wir

F(x)=3/6 für 3 [mm] \le [/mm] x<4
F(x)=4/6 für 4 [mm] \le [/mm] x<5
F(x)=5/6 für 5 [mm] \le [/mm] x<6

bis wir schließlich für [mm] x\ge [/mm] 6 die Fktwerte F(x)=P(X [mm] \le [/mm] x)= [mm] \summe_{i=1}^{6}P(X=x_i)=1 [/mm] erhalten.

Dies sei doch jetzt klar, oder?

2.Beispiel Wertevorrat abzählbar unendlich

Bekanntes Beispiel ist das Spiel "Mensch, ärgere dich nicht". X sei die ZV, die die Anzahl der bis zum Start notwendigen Würfe mit einem idealen Würfel beschreibt. Wertevorrat also i=1,2,3,4,...n

Man erhält
F(x)=0 für x<1
F(x)=P(X [mm] \le [/mm] x)= [mm] \summe_{i=1}^{n}(1/6)*(5/6)^{i-1}=1/6* \bruch{1-(5/6)^n}{1-(5/6)}=1-(5/6)^n, [/mm]  n=1,2,...

für n [mm] \le [/mm] x < n+1

Für die Wkt dafür, dass bis zum Start mehr als n Versuche notwendig sind, gilt
[mm] P(X>n)=1-P(X\le n)=1-(1-(5/6)^n)=(5/6)^n [/mm]

ich hoffe, ich konnte dir weiterhelfen!
lg
abadonna


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de