www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - disktrete Zufallsvariablen
disktrete Zufallsvariablen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

disktrete Zufallsvariablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:35 So 06.05.2007
Autor: Gero

Hallo @ all,

Ich habe folgende W´keitsverteilungen gegeben: P[X=1]=2/3 und P[X=4]=1/3. Nun soll ich damit P[X=5] berechnen.
Ich hab mir gedacht, dass gilt: P[X=5]=P[X=1] + P[X=5]= 2/3 +1/3=1.
Naja, aber das kommt mir dann doch ein bisschen komisch vor. Kann mir da vielleicht jemand helfen?
Vielen Dank!

        
Bezug
disktrete Zufallsvariablen: Komisch
Status: (Antwort) fertig Status 
Datum: 13:52 So 06.05.2007
Autor: Infinit

Hallo Gero,
die Schreibweise ist schon etwas komisch und wenn ich mir die Werte anschaue, so vermute ich, dass es sich hierbei um eine Dichtefunktion handelt, deren Integration bzw. Summation im diskreten Fall Dir erst die Wahrscheinlichkeit liefert. Wenn diese Interpretation richtig ist, so hast Du mit Deiner Berechnung recht, denn die Summation der Dichte bis zu einem Wert von 5 (ich hätte dann aber eher die Schreibweise $ P(X [mm] \leq [/mm] 5) $ erwartet) gibt Dir an, wie groß die Wahrscheinlichkeit ist, dass eines der Ereignisse eintritt, die auf Werte kleiner 5 abgebildet wurden. Dies ist das sichere Ereignis.
Um Wahrscheinlichkeitswerte kann es sich nicht handeln, da diese Werte monoton ansteigen, aber P(X=1) bereits größer ist als P(X=4).
Viele Grüße,
Infinit


Bezug
        
Bezug
disktrete Zufallsvariablen: Überprüfen
Status: (Antwort) fertig Status 
Datum: 14:31 So 06.05.2007
Autor: generation...x

Also so wie die Aufgabe gestellt ist, kann die Antwort nur P(X=5)=0 sein, denn wir müssen das so formulieren:
[mm]P(X\in\{1,4\})=\bruch{2}{3}+\bruch{1}{3}=1[/mm]
Dann gilt
[mm]P(X=5) \le P(X\not\in\{1,4\})=1-P(X\in\{1,4\})=0[/mm]

Bezug
                
Bezug
disktrete Zufallsvariablen: Auf den Punkt gebracht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:41 So 06.05.2007
Autor: generation...x

Ums nochmal auf den Punkt zu bringen:
Das ist genauso wie wenn man dich fragt, wie groß die Wahrscheinlichkeit ist, mit einem normalen Würfel (d6) eine 7 zu würfeln. Die Antwort würde dir wohl nicht schwer fallen.
Würdest du so vorgehen, wie eingangs angedacht, kämst du hier auch auf ein sehr merkwürdiges Ergebnis...

Bezug
                        
Bezug
disktrete Zufallsvariablen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:59 So 06.05.2007
Autor: Gero

Oh, stimmt ja. Klingt logisch und einleuchtend, daran hab ich gar nicht mehr gedacht *gg*
Jetzt geht die Aufgabe bei mir noch weiter und zwar soll ich P[Y=y] bestimmen y [mm] \in [/mm] Y, wobei Y:= [mm] \wurzel{|X|}. [/mm] Kann ich dann sagen, dass:
P[Y=1]=2/3 und P[Y=16]=1/3 ?
Also wenn ich sag [mm] Y=x^2. [/mm] Aber Y wird wahrscheinlich eine andere Verteilung haben, oder?

Grüßle
Gero

Bezug
                                
Bezug
disktrete Zufallsvariablen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 10.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de