www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - doppelte partielle Integration
doppelte partielle Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

doppelte partielle Integration: Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:22 So 18.03.2012
Autor: JamesBlunt

Aufgabe
Bestimmen Sie das Integral durch zweimalige Anwendung der Produktintegration!
[mm] \integral_{0}^{2}{x^{2}*e^{x} dx} [/mm]

ich setze fest:
u(x) = [mm] x^{2} [/mm]
u´(x)=2x
v´(x) = [mm] e^{x} [/mm]
[mm] v´´(x)=e^{x} [/mm]

= [mm] \{x^{2}*e^{x}\} [/mm] - [mm] \integral_{0}^{2}{2x * e^{x} dx} [/mm]

Nun die zweite parielle Integration:
u(x) = 2x
u´(x) = 2
v´(x)=  [mm] e^{x} [/mm]
v(x)=  [mm] e^{x} [/mm]

[mm] =\{2x*e^{x}\} [/mm] - [mm] \integral_{0}^{2}{2e^{x} dx} [/mm]
= [mm] 4e^{2} [/mm] - [mm] 2e^{2} [/mm]

gesamt:
[mm] 4e^{2} [/mm] -  [mm] 2e^{2} [/mm]
[mm] =2e^{2} [/mm]

        
Bezug
doppelte partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 So 18.03.2012
Autor: Gonozal_IX

Hallo JamesBlunt,

wie wäre es erstmal mit einer freundlichen Begrüßung? Eine Verabschiedungsformel wäre auch angebracht..... also zumindest grundlegende Dinge der Höflichkeit sind wohl nicht zu viel verlangt, wenn man hier Hilfe erwartet!
Achte bei deinem nächsten Beitrag bitte darauf.

Nun zu deiner Aufgabe:


>  ich setze fest:
>  u(x) = [mm]x^{2}[/mm]
>  u´(x)=2x
>  v´(x) = [mm]e^{x}[/mm]
>  [mm]v´´(x)=e^{x}[/mm]

[ok]

  

> = [mm]\{x^{2}*e^{x}\}[/mm] - [mm]\integral_{0}^{2}{2x * e^{x} dx}[/mm]

Hier fehlen die Grenzen beim ersten Summanden, du meinst aber das Richtige.

  

> Nun die zweite parielle Integration:
>  u(x) = 2x
>  u´(x) = 2
>  v´(x)=  [mm]e^{x}[/mm]
>  v(x)=  [mm]e^{x}[/mm]

[ok]
  

> [mm]=\{2x*e^{x}\}[/mm] - [mm]\integral_{0}^{2}{2e^{x} dx}[/mm]

Auch hier fehlen wieder die Grenzen beim ersten Summanden.

>  = [mm]4e^{2}[/mm] -
> [mm]2e^{2}[/mm]

[notok]

Hier scheinst du einen Fehler gemacht zu haben bei der Berechnung von

[mm]\integral_{0}^{2}{2e^{x} dx}[/mm]

> gesamt:
>  [mm]4e^{2}[/mm] -  [mm]2e^{2}[/mm]
>  [mm]=2e^{2}[/mm]  

Wie kommst du darauf?
Setze dann mal bitte schrittweise ein um deine Umformungsschritte besser nachvollziehen zu können.

MFG,
Gono.

Bezug
                
Bezug
doppelte partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:02 So 18.03.2012
Autor: JamesBlunt

Hey, sorry, da war ich leider im totalen Stress.
Vielen Dank schon mal für deine Mühe.

Ich wusste nicht wie ich die fehlenden Grenzen mache, bei den eckigen Klammern.

Beim Hinschreiben ist mir der Fehler aufgefallen... e hoch 0 ist bekanntlich nicht null...

Aber besten Dank und Lg

Bezug
                        
Bezug
doppelte partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 So 18.03.2012
Autor: Gonozal_IX

Hiho,

> Ich wusste nicht wie ich die fehlenden Grenzen mache, bei
> den eckigen Klammern.

ebenso wie beim Integral mit _0 und ^2
  

> Beim Hinschreiben ist mir der Fehler aufgefallen... e hoch
> 0 ist bekanntlich nicht null...

Und was kommt nun insgesamt raus?

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de