www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - e-Funktion
e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:59 Mi 08.11.2006
Autor: TryingHard

Aufgabe
Gegeben sei die Funktion f mit $ [mm] f(x)=e^{x+1} [/mm] $
Welcher Punkt des Graphen von f hat vom Ursprung den kleinsten Abstand?

f(x)=e^(x+1)

Hallo,

ich habe ein kleines Problem mit dieser Aufgabe: Ich frage mich, wie ich das rechnerisch bestimmen kann. Mit einem online graphic calculator mit schon einmal den Graphen angeschaut und auch gesehen, dass dieser gesuchter Punkt zwichen -0,5 und -0,75 liegt.

Aber wie kann ich das denn eben bestimmen? Muss ich ein Sekante zwischen dem Punkt (0|0) und welchem Punkt der Funktion bestimmen?

Mir fällt echt nichts ein.


Vielen Dank schon jetzt für eure Tipps oder Hilfestellungen.




LG TryingHard

        
Bezug
e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Mi 08.11.2006
Autor: chrisno

Hallo TryingHard,

es gibt zwei Wege:
- Berechne für jeden Punkt den Abstand $d = [mm] \wurzel{x^2 + f^2(x)}$ [/mm] Das ist eine Funktion die Du minimieren kannst. Netter geht es, wenn man [mm] d^2 [/mm] minimiert. Das führt zu dem gleichen Ergebnis.
- Berechne die Normalen zu der Kurve. Das sind die Senkrechten auf den Tangenten. Suche die davon heraus, die durch den Ursprung geht. Das Argument dazu: Wenn die Verbindungsstrecke zwischen Ursprung und Graf nicht senkrecht auf dem Grafen steht, dann kann man einen Punkt auf dem Grafen finden, zu dem noch eine kürzere Strecke gehört. Das ist erst an der Auftreffstelle der Senkrechten nicht mehr der Fall. Beachte, dass es aber auch ein maximaler Abstand sein kann, oder eine Entsprechung für einen Sattelpunkt. Ein bisschen Argumentieren löst das Problem.


Bezug
                
Bezug
e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Do 09.11.2006
Autor: TryingHard

Hallo,

danke für die Antwort.
Wenn ich das recht verstehe ist die einzig sinnvoll und schnelle Variante, Variante 2


>  - Berechne die Normalen zu der Kurve. Das sind die
> Senkrechten auf den Tangenten. Suche die davon heraus, die
> durch den Ursprung geht. Das Argument dazu: Wenn die
> Verbindungsstrecke zwischen Ursprung und Graf nicht
> senkrecht auf dem Grafen steht, dann kann man einen Punkt
> auf dem Grafen finden, zu dem noch eine kürzere Strecke
> gehört. Das ist erst an der Auftreffstelle der Senkrechten
> nicht mehr der Fall. Beachte, dass es aber auch ein
> maximaler Abstand sein kann, oder eine Entsprechung für
> einen Sattelpunkt. Ein bisschen Argumentieren löst das
> Problem.

Nur verstehe ich nicht ganz wie ich vorgehen soll. Die Senkrechten der Tangente. Leider fällt mir nicht mehr ein, wie man die Tangente hier bestimmt. Wobei die erste Ableitung ja gleich der Steigung im Punkt ist. Aber die Ableitungen sind ja alle gleich der Ausgangsfunktion.
Bitte schreibe mir noochmal kurz, wie ich die Tangente bestimme und zweitens wie ich dann weiter vorgehen muss. Vielleicht könntest du sogar anfangen zu rechnen, damit ich sehe wie es funktioniert und wie ich weitermachen muss. Das muss aber nicht sein. Ich will das auch nicht abschreiben, sondern ja verstehen.

Bielen Dank schon jetzt und LG TryingHard

Bezug
                        
Bezug
e-Funktion: Variante 1
Status: (Antwort) fertig Status 
Datum: 22:03 Do 09.11.2006
Autor: informix

Hallo TryingHard,

> Hallo,
>  
> danke für die Antwort.
>  Wenn ich das recht verstehe ist die einzig sinnvoll und
> schnelle Variante, Variante 2

Das glaube ich nicht. Nimm lieber diese Formel bzw. ihr Quadrat:
$ d = [mm] \wurzel{x^2 + f^2(x)} [/mm] $ mit $ [mm] f(x)=e^{x+1} [/mm] $

[mm] $\Rightarrow D(x)=d(x)^2=x^2+f^2(x)$ [/mm]
[mm] $D(x)=x^2+(e^{x+1})^2$ [/mm]

denke daran, dass [mm] (a^r)^2=a^{2r} [/mm] gilt! [mm] \rightarrow [/mm] MBPotenzgesetze

von dieser Funktion suchst du das Minimum und prüfst, ob die zugehörige Minimalstelle auch für die Funktion d(x) das Minimum ergibt, - und bist fertig.


Gruß informix

Bezug
                        
Bezug
e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Do 09.11.2006
Autor: chrisno

Nur der Vollständigkeit halber:
> Nur verstehe ich nicht ganz wie ich vorgehen soll. Die
> Senkrechten der Tangente. Leider fällt mir nicht mehr ein,
> wie man die Tangente hier bestimmt. Wobei die erste
> Ableitung ja gleich der Steigung im Punkt ist. Aber die
> Ableitungen sind ja alle gleich der Ausgangsfunktion.

Na und?

Die Tangente ist eine Gerade. Deren Steigung ist gerade die Ableitung der Funktion an der Berührstelle. Dann ist noch ein Punkt, nämlich der Berührpunkt gegeben. Damit läßt sich die Geradengleichung bestimmen.

Für die Normale geht es analog, nur das für die Steigung nun $m(x) = [mm] -\bruch{1}{f'(x)}$ [/mm] gilt. Die Normale an der Stelle [mm] $x_0$ [/mm] hat also die Steigung $m = [mm] -\bruch{1}{e^{x_0+1}}$ [/mm] und weiterhin den Punkt [mm] $(x_0;e^{x_0+1})$. [/mm]
Die Geradengleichung lautet: $g(x) = [mm] -\bruch{1}{e^{x_0+1}}*x [/mm] + c$. Einsetzen des Punktes ergibt: [mm] $e^{x_0+1} [/mm] = [mm] -\bruch{1}{e^{x_0+1}}*x_0 [/mm] + c$.
Da die Normale durch den Ursprung gehen soll muss $c=0$ gelten. Also bleit zur Bestimmung von [mm] x_0: $e^{x_0+1} [/mm] = [mm] -\bruch{1}{e^{x_0+1}}*x_0$. [/mm]
Wie es dann weitergeht, sehe ich nicht so schnell.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de