www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - ebenengleichung aus 4 punkten
ebenengleichung aus 4 punkten < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ebenengleichung aus 4 punkten: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:41 Di 09.06.2009
Autor: lasagnetante

Aufgabe
Gegeben sind die Punkte A(10/2/5), B(6/8/3), C(-2/12/7) und D(2/6/9). Bestimme die Gleichung dieser Ebene.

Ich weiss zwar, wie man eine Ebenengleichung in Parameterform aus 3 Punkten aufstellt, aber gilt das selbe prinzip auch fuer 4 Punkte? Also um die aufgabe oben zu loesen, habe ich mal als stuetzvektor den ortsvektor von A (hier OA) genommen und als richtungsvektoren AB, AC und AD. bei mir sieht die ebenengleichung dann so aus:
E: x= OA + r*AB + s*AC + t*AD. ist das denn richtig so?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
ebenengleichung aus 4 punkten: Antwort
Status: (Antwort) fertig Status 
Datum: 11:51 Di 09.06.2009
Autor: angela.h.b.


> Gegeben sind die Punkte A(10/2/5), B(6/8/3), C(-2/12/7) und
> D(2/6/9). Bestimme die Gleichung dieser Ebene.
>  Ich weiss zwar, wie man eine Ebenengleichung in
> Parameterform aus 3 Punkten aufstellt, aber gilt das selbe
> prinzip auch fuer 4 Punkte?

Hallo,

Du könntest entsetzliche Probleme bekommen. Denn wer garantiert Dir, daß die Punkte wirklich alle in einer Ebene liegen?

Mach es so: nimm drei geeignete Punkte, stell die Ebenengleichung auf und kontrolliere, o der 4.Punkt auch in der Ebene liegt.

(Geeignet sind die Punkte, wenn sie nicht auf einer Geraden liegen, Du merkst das beim Aufstellen der Richtungsvektoren).

Gruß v. Angela




Bezug
                
Bezug
ebenengleichung aus 4 punkten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:09 Di 09.06.2009
Autor: lasagnetante

danke! also, ich habe zuerst die ebenengleichung aus drei punkten aufgestellt und geprueft, ob der Punkt D auch auf derselben ebene liegt:

D = OA + r*AB + s*AC (Punktprobe). fuer r hab ich dann -1 und fuer s 1 rausbekommen. das heisst doch, dass die vektoren linear abhaengig sind und somit auf einer ebene liegen, oder?

Bezug
                        
Bezug
ebenengleichung aus 4 punkten: Antwort
Status: (Antwort) fertig Status 
Datum: 12:16 Di 09.06.2009
Autor: angela.h.b.


> danke! also, ich habe zuerst die ebenengleichung aus drei
> punkten aufgestellt und geprueft, ob der Punkt D auch auf
> derselben ebene liegt:
>  
> D = OA + r*AB + s*AC (Punktprobe). fuer r hab ich dann -1
> und fuer s 1 rausbekommen. das heisst doch, dass die
> vektoren linear abhaengig sind und somit auf einer ebene
> liegen, oder?

Hallo,

ja, Du weißt nun, daß der Punkt D in derselben Ebene liegt wie A,B,C.

AD ist linear abhängig von AB und AC.

Gruß v. Angela


Bezug
                                
Bezug
ebenengleichung aus 4 punkten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:24 Di 09.06.2009
Autor: lasagnetante

achso, aber wie lautet dann letztendlich die gleichung der ganzen ebene?
wenn also D = OA + r*AB + s*AC ist, dann muss ich D auf die andere Seite der gleichung bringen und von OA abziehen, oder?

Bezug
                                        
Bezug
ebenengleichung aus 4 punkten: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Di 09.06.2009
Autor: angela.h.b.


> achso, aber wie lautet dann letztendlich die gleichung der
> ganzen ebene?
> wenn also D = OA + r*AB + s*AC ist, dann muss ich D auf die
> andere Seite der gleichung bringen und von OA abziehen,
> oder?

Hallo,

die Gleichung der Ebene ist die Gleichung, die Du aus den Punkten A,B,C aufgestellt hattest, also E: x=OA + r*AB + s*AC.

Obgleich der Punkt D in der Ebenengleichung nicht namentlich genannt wird - ein Schicksal, welches er mit den meisten Punkten dieser Ebene teilt -, hast Du damit die Gleichung der Ebene aufgestellt, in welcher A,B,C,D liegen. Daß D wirklich drinliegt, hast Du ja völlig richtig nachgerechnet.


> wenn also D = OA + r*AB + s*AC ist, dann muss ich D auf die
> andere Seite der gleichung bringen und von OA abziehen,

So prüfst Du, ob D in der Ebene liegt. Das hast Du ja richtig gemacht.

Gruß v. Angela

Bezug
                                                
Bezug
ebenengleichung aus 4 punkten: neue Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:15 Di 09.06.2009
Autor: lasagnetante

Aufgabe
Gegeben sind die Punkte A(10/2/5), B(6/8/3), C(-2/12/7) und D(2/6/9). Berechne die Durchstosspunkte der Koordinatenachsen.

Danke fuer die Hilfestellung! Jetzt gibt es aber noch diese Teilaufgabe dazu, die ich loesen muss. Wie gehe ich das denn am besten an? Bisher haben wir ja die vier Punkte gegeben und die Ebenengleichung
E: x= OA + r*AB + s*AC
E: x= (10/2/5) + r*(-4/6/-2) + s*(-12/10/2)
Um nun die Durchstosspunkte der Koordinatenachsen an der Ebene auszurechnen, muss ich da nicht zuerst die gleichungen fuer die koordinatenachsen x, y und z herausschreiben? also:
x= 10 - 4r - 12s
y= 2 + 6r +10s
z = 5 - 2r + 2s
aber wie es weitergehen soll, da komm ich nun wirklich nicht weiter. was kann ich aus den gleichungen machen?

Bezug
                                                        
Bezug
ebenengleichung aus 4 punkten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:25 Di 09.06.2009
Autor: hawe

Du berechnest die Koordinatenform der Ebene
(>< Kreuzprodukt, . Skalarprodukt)

(B-A)><(C-A).([x,y,z]-A)/32

und schaust Dir das Ergebnis seehr genau an...



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de