www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - eigenvektoren bestimmen
eigenvektoren bestimmen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eigenvektoren bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Di 17.12.2013
Autor: arbeitsamt

Aufgabe
Ich soll die eigenvektoren bestimmen

a) [mm] \pmat{ 1 & 2 & 2 \\ 2 & -2 & 1 \\ 2 & 1 & -2 } [/mm]

b) [mm] \pmat{ 2 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 \\ 0 & 0 & 2 & 0 \\ 1 & 2 & -4 & 2 } [/mm]


eigenwerte bestimmen:

[mm] det\pmat{ 1-\lambda & 2 & 2 \\ 2 & -2-\lambda & 1 \\ 2 & 1 & -2-\lambda } [/mm] = [mm] (1-\lambda)*(-2-\lambda)*(-2-\lambda)+4+4-(2*(-2-\lambda)*2)-(1-\lambda)-(-2-\lambda)*4 [/mm]

= [mm] -\lambda^3-3\lambda^2+9\lambda+27 [/mm]

ist es soweit richtig?

        
Bezug
eigenvektoren bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Di 17.12.2013
Autor: fred97


> Ich soll die eigenvektoren bestimmen
>  
> a) [mm]\pmat{ 1 & 2 & 2 \\ 2 & -2 & 1 \\ 2 & 1 & -2 }[/mm]
>  
> b) [mm]\pmat{ 2 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 \\ 0 & 0 & 2 & 0 \\ 1 & 2 & -4 & 2 }[/mm]
>  
> eigenwerte bestimmen:
>  
> [mm]det\pmat{ 1-\lambda & 2 & 2 \\ 2 & -2-\lambda & 1 \\ 2 & 1 & -2-\lambda }[/mm]
> =
> [mm](1-\lambda)*(-2-\lambda)*(-2-\lambda)+4+4-(2*(-2-\lambda)*2)-(1-\lambda)-(-2-\lambda)*4[/mm]
>  
> = [mm]-\lambda^3-3\lambda^2+9\lambda+27[/mm]
>  
> ist es soweit richtig?

Ja

FRED


Bezug
                
Bezug
eigenvektoren bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 Di 17.12.2013
Autor: arbeitsamt

ok danke

ich habe mit der nullstelle [mm] \lambda_1=3 [/mm] di epolynomdivision gemacht

und bekomme nach der polynomdivision folgende gleichung

[mm] 0=-\lambda^2-6\lambda-9 [/mm]

[mm] 0=\lambda^2+6\lambda+9 [/mm]

0= [mm] (\lambda+3)^2 [/mm]

[mm] \lambda=-3 [/mm]

das heißt [mm] \lambda_1=3 [/mm]

und [mm] \lambda_2 [/mm] und [mm] \lambda_3=-3 [/mm]

richtig?

Bezug
                        
Bezug
eigenvektoren bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:06 Di 17.12.2013
Autor: schachuzipus

Hallo,

> ok danke

>

> ich habe mit der nullstelle [mm]\lambda_1=3[/mm] [ok] di epolynomdivision
> gemacht

>

> und bekomme nach der polynomdivision folgende gleichung

>

> [mm]0=-\lambda²-6\lambda-9[/mm]

Da fehlt ein Quadrat (Tippfehler ...): [mm] $-\lambda^2-6\lambda-9$ [/mm]

>

> [mm]0=\lambda²+6\lambda+9[/mm]

>

> 0= [mm](\lambda+3)^2[/mm]

>

> [mm]\lambda=-3[/mm]

>

> das heißt [mm]\lambda_1=3[/mm]

>

> und [mm]\lambda_2[/mm] und [mm]\lambda_3=-3[/mm]

>

> richtig?

Jo, bestens!

Gruß

schachuzipus

Bezug
                                
Bezug
eigenvektoren bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Di 17.12.2013
Autor: arbeitsamt

ok danke

ich was gerade nicht so genau wie ich die eigenvektoren bestimmen soll

für [mm] \lambda_1=3 [/mm]

[mm] \pmat{ -2 & 2 & 2 \\ 2 & -5 & 1 \\ 2 & 1 & -5 }*\vektor{x \\ y \\ z}=0 [/mm]

[mm] \Rightarrow [/mm]

-2x + 2y + 2z = 0

2x -5y + z = 0

2x+ y -5z = 0

stell ich hier nach einer unbekannten um und setze es in einer anderen gleichung ein oder wie sollte man hier am besten die eigenvektoren bestimmen?

Bezug
                                        
Bezug
eigenvektoren bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Di 17.12.2013
Autor: schachuzipus

Hallo nochmal,


> ok danke

>

> ich was gerade nicht so genau wie ich die eigenvektoren
> bestimmen soll

>

> für [mm]\lambda_1=3[/mm]

>

> [mm]\pmat{ -2 & 2 & 2 \\ 2 & -5 & 1 \\ 2 & 1 & -5 }*\vektor{x \\ y \\ z}=0[/mm]

>

> [mm]\Rightarrow[/mm]

>

> -2x + 2y + 2z = 0

>

> 2x -5y + z = 0

>

> 2x+ y -5z = 0

>

> stell ich hier nach einer unbekannten um und setze es in
> einer anderen gleichung ein oder wie sollte man hier am
> besten die eigenvektoren bestimmen?

Das kannst du machen, wie du lustig bist, Additionsverfahren oder oder ...

Sinnvoll ist es sicher, mit der Matrix zu arbeiten und den Gaußalgorithmus zu verwenden.

Bestimme den Kern von [mm]\pmat{-2&2&2\\2&-5&1\\2&1&-5}[/mm]

Das ist mit 2-3 Schritten getan ;-)


Gruß

schachuzipus

Bezug
                                
Bezug
eigenvektoren bestimmen: Quadrat versteckt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:38 Di 17.12.2013
Autor: Loddar

Hallo schachuzipus!


> > [mm]0=-\lambda²-6\lambda-9[/mm]

>

> Da fehlt ein Quadrat (Tippfehler ...): [mm]-\lambda^2-6\lambda-9[/mm]

Das war / ist schon da, wurde aber leider falsch eingetippt mit ² .


Gruß
Loddar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de