www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - ein paar integrale
ein paar integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ein paar integrale: kontrolle
Status: (Frage) beantwortet Status 
Datum: 17:50 Di 24.04.2007
Autor: celeste16

Aufgabe
a) [mm] \integral{\wurzel{1-x^{2}} dx} [/mm]
b) [mm] \integral{sin\wurzel{x} dx} [/mm]
c) [mm] \integral{ln^{2}x dx} [/mm]
d) [mm] \integral{\bruch{1}{1+\wurzel{x}} dx} [/mm]

wollte hier nur mal ein paar aufgaben reinstellen um nachzuprüfen ob ich das (hauptsächlich die substitution) verstanden habe

a) [mm] \integral{\wurzel{1-x^{2}} dx} [/mm] = [mm] \bruch{1}{-2x}\integral{z^{0,5} dz} [/mm] = [mm] \bruch{1}{-3x}z^{1,5} [/mm] + C = [mm] \bruch{1}{-3x}(1-x^{2})^{1,5} [/mm] + C

b) [mm] \integral{sin\wurzel{x} dx} [/mm] = [mm] 2\wurzel{x} \integral{sinz dz} [/mm] = [mm] -2\wurzel{x}cos\wurzel{x} [/mm] + C

c) [mm] \integral{ln^{2}x dx} [/mm] = [mm] x\integral{z^{2} dz} [/mm] = [mm] \bruch{xz^{3}}{3} [/mm] + C = [mm] \bruch{xln^{3}x}{3} [/mm] + C

d) [mm] \integral{\bruch{1}{1+\wurzel{x}} dx} [/mm] = [mm] 2\wurzel{x} \integral{z^{-1} dz} [/mm] = [mm] 2\wurzel{x}ln\vmat{1 + \wurzel{x}} [/mm]  + C





        
Bezug
ein paar integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Di 24.04.2007
Autor: Mary15


> a) [mm]\integral{\wurzel{1-x^{2}} dx}[/mm]
>  b)
> [mm]\integral{sin\wurzel{x} dx}[/mm]
>  c) [mm]\integral{ln^{2}x dx}[/mm]
>  d)
> [mm]\integral{\bruch{1}{1+\wurzel{x}} dx}[/mm]
>  wollte hier nur mal
> ein paar aufgaben reinstellen um nachzuprüfen ob ich das
> (hauptsächlich die substitution) verstanden habe
>  
> a) [mm]\integral{\wurzel{1-x^{2}} dx}[/mm] =
> [mm]\bruch{1}{-2x}\integral{z^{0,5} dz}[/mm] = [mm]\bruch{1}{-3x}z^{1,5}[/mm]
> + C = [mm]\bruch{1}{-3x}(1-x^{2})^{1,5}[/mm] + C
>  
> b) [mm]\integral{sin\wurzel{x} dx}[/mm] = [mm]2\wurzel{x} \integral{sinz dz}[/mm]
> = [mm]-2\wurzel{x}cos\wurzel{x}[/mm] + C
>  
> c) [mm]\integral{ln^{2}x dx}[/mm] = [mm]x\integral{z^{2} dz}[/mm] =
> [mm]\bruch{xz^{3}}{3}[/mm] + C = [mm]\bruch{xln^{3}x}{3}[/mm] + C
>
> d) [mm]\integral{\bruch{1}{1+\wurzel{x}} dx}[/mm] = [mm]2\wurzel{x} \integral{z^{-1} dz}[/mm]
> = [mm]2\wurzel{x}ln\vmat{1 + \wurzel{x}}[/mm]  + C
>  
>
>
>

Hi,
es tut mir leid, aber alle deine Lösungen sind falsch.
Bei ersten probiere mal die Substitution x=sinz.
Die Aufgabe 3 kannst du mit Hilfe der partielle Integration lösen.
Bei dem letzten sieht fast richtig aus. Es muss 2( [mm] \wurzel{x}-ln|1+\wurzel{x}|) [/mm] raus kommen.


Bezug
                
Bezug
ein paar integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Di 24.04.2007
Autor: celeste16

okay, danke für die antwort.
ich hab also ein grundlegendes verständnisproblem. kannst du erkennen wo es bei mir hakt?
ich versuche mich derweil mal an den anderen aufgaben.


so hab mich derweil noch einmal mit der c) beschäftigt:
[mm] \integral{ln^{2}x dx} [/mm] = (xlnx - x)lnx - [mm] \integral{lnx-1 dx} [/mm] = (xlnx - x)lnx - xnlx + 2x + C = [mm] x(ln^{2}x [/mm] - 2lnx + 2)
bin ich jetzt auf dem richtigen weg?

bei a) hab ich aber trotzdem das problem dass ich nicht weiß wie ich mit der wurzel umgehen soll: = [mm] ...\integral{\wurzel{1-sin^{2}z}} [/mm]

Bezug
                        
Bezug
ein paar integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Di 24.04.2007
Autor: Mary15


> okay, danke für die antwort.
>  ich hab also ein grundlegendes verständnisproblem. kannst
> du erkennen wo es bei mir hakt?

bei der Substitutions-Methode liegt der Fehler daran, dass die beiden Variablen "alte" x und "neue" z gleichzeitig vorhanden sind. Wenn du eine Substitution wählst, dann muss überall die Variable x durch den neuen Term mit z ersetzt werden. Auch dx muss durch z bestimmt werden. Du darfst nicht einfach statt dx dz schreiben.
Z.b. [mm] \wurzel{x} [/mm] = z [mm] \Rightarrow [/mm] x = [mm] z^2 \Rightarrow [/mm] dx = 2zdz
Dabei spielt auch eine Rolle welche Substitution du wählst. Z.B. bei a) [mm] 1-x^2 [/mm] = z bringt nichts.

>  ich versuche mich derweil mal an den anderen aufgaben.
>  
>
> so hab mich derweil noch einmal mit der c) beschäftigt:
>  [mm]\integral{ln^{2}x dx}[/mm] = (xlnx - x)lnx - [mm]\integral{lnx-1 dx}[/mm]
> = (xlnx - x)lnx - xnlx + 2x + C = [mm]x(ln^{2}x[/mm] - 2lnx + 2)
>  bin ich jetzt auf dem richtigen weg?
>  

Die Lösung ist richtig! Allerdings verstehe ich deinen Lösungsweg nicht ganz. Was hast du als u und v' gewählt?



Bezug
                                
Bezug
ein paar integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Di 24.04.2007
Autor: celeste16

na ich hab u' = lnx; u = xlnx - x und v=lnx mit v'= [mm] x^{-1} [/mm]
(geht das anders??, u' und v sind doch gleich somit ist es doch pupsegal was ich nehme)

bei der substitution hab ich das tatsächlich grundsätzlich falsch verstanden.

dann mache ich mal
b)
[mm] \integral{sin\wurzel{x} dx} [/mm] = [mm] \integral{2zsinz dz} [/mm] = -2zcosz + [mm] 2\integral{cosz dz} [/mm] = [mm] 2sin\wurzel{x} [/mm] - [mm] 2\wurzel{x}cos\wurzel{x} [/mm]

und jetzt hab ich mich auch mit d) beschäftigt:
ich hab aber nach dem integrieren = 2z - 2lnIzI mit [mm] z=1+\wurzel{x} [/mm] raus, demnach hätte ich bei meinem ergebnis = [mm] 2(1+\wurzel{x} [/mm] - [mm] lnI1+\wurzel{x}I) [/mm] und komme leider nicht ganz auf dein ergebnis

und jetzt bin ich auch an a) dran:
x = sinz [mm] \Rightarrow [/mm] z=arcsinx und dx=-coszdz

[mm] -\integral{\wurzel{1-sin²z}cosz dz} [/mm] = [mm] -\integral{cos²z dz} [/mm] = [mm] -\bruch{1}{2}(z [/mm] + sinzcosz)  (so stehts zumindest in meinen Tafelwerk, hab ich nicht nochmal nachgerechnet) = [mm] -\bruch{1}{2}(arcsinx [/mm] + xcosarcsinx)

machen wir's kurz, da häng ich schon wieder. davon mal abgesehen dass es nicht sonderlich "richtig" aussieht könnte ich das jetzt nicht mehr vereinfachen.

tut mir echt leid dass ich dich damit so quäle aber ich brauch mal wieder deine hilfe.


Bezug
                                        
Bezug
ein paar integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Di 24.04.2007
Autor: Mary15


> na ich hab u' = lnx; u = xlnx - x und v=lnx mit v'= [mm]x^{-1}[/mm]
>  (geht das anders??, u' und v sind doch gleich somit ist es
> doch pupsegal was ich nehme)

Ok. Das geht auch. Ich habe  u = [mm] ln^{2}x [/mm] und v' = 1 gewählt und habe das gleiche Ergebnis gekriegt.

>  
> bei der substitution hab ich das tatsächlich grundsätzlich
> falsch verstanden.
>  
> dann mache ich mal
>  b)
>  [mm]\integral{sin\wurzel{x} dx}[/mm] = [mm]\integral{2zsinz dz}[/mm] =
> -2zcosz + [mm]2\integral{cosz dz}[/mm] = [mm]2sin\wurzel{x}[/mm] -
> [mm]2\wurzel{x}cos\wurzel{x}[/mm]

>
richtig!

> hast du die bearbeitung im vorherigen post mitgekriegt
> (wegen a) und der wurzel)?
>  

Sorry, habe übersehen. Also bei a) soltest du dich weiter viel mit trigonometrischen Formel auseinandersetzen. [mm] \wurzel{1-sin^{2}x} [/mm] = [mm] \wurzel{cos^{2}x} [/mm] = cosx

> und jetzt hab ich mich auch mit d) beschäftigt:
>  ich hab aber nach dem integrieren = 2z - 2lnIzI mit
> [mm]z=1+\wurzel{x}[/mm] raus, demnach hätte ich bei meinem ergebnis
> = [mm]2(1+\wurzel{x}[/mm] - [mm]lnI1+\wurzel{x}I)[/mm] und komme leider nicht
> ganz auf dein ergebnis
>

Sorry mein Fehler. Ich habe 1 verloren. Deine Lösung ist richtig.  


Bezug
                                        
Bezug
ein paar integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Di 24.04.2007
Autor: Mary15


>  
> und jetzt bin ich auch an a) dran:
>  x = sinz [mm]\Rightarrow[/mm] z=arcsinx und dx=-coszdz
>  
> [mm]-\integral{\wurzel{1-sin²z}cosz dz}[/mm] = [mm]-\integral{cos²z dz}[/mm]
> = [mm]-\bruch{1}{2}(z[/mm] + sinzcosz)  (so stehts zumindest in
> meinen Tafelwerk, hab ich nicht nochmal nachgerechnet) =
> [mm]-\bruch{1}{2}(arcsinx[/mm] + xcosarcsinx)
>  
> machen wir's kurz, da häng ich schon wieder. davon mal
> abgesehen dass es nicht sonderlich "richtig" aussieht
> könnte ich das jetzt nicht mehr vereinfachen.

[mm] \integral{cos²z dz} [/mm]  ist richtig! Nun kannst du den Formel für cos2z verwenden:
cos2z = [mm] cos^{2}x-sin^{2}x \Rightarrow cos^{2}x [/mm] = [mm] \bruch{1}{2}(1+cos2z) [/mm]
also [mm] \integral{cos²z dz} [/mm] = [mm] \bruch{1}{2}\integral{(1+cos2z) dz} [/mm] = [mm] \bruch{1}{2}(z +\bruch{1}{2}sin2z) [/mm] = [mm] \bruch{1}{2}(arcsinx +\bruch{1}{2}sin2z) [/mm] = [mm] \bruch{1}{2}(arcsinx +\bruch{1}{2}*2sinzcosz) [/mm] = [mm] \bruch{1}{2}(arcsinx +\bruch{1}{2}*2x\wurzel{1-x^2}) [/mm]


> tut mir echt leid dass ich dich damit so quäle aber ich
> brauch mal wieder deine hilfe.
>  

kein Problem! :)

Bezug
                                                
Bezug
ein paar integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:01 Di 24.04.2007
Autor: celeste16

vielen dank für deine hilfe.
dann bleibt mit wohl nichts als dir eine schöne nacht zu wünschen.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de