www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - eine Nullstelle
eine Nullstelle < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eine Nullstelle: aufgabe
Status: (Frage) überfällig Status 
Datum: 21:18 Mo 21.12.2009
Autor: wee

Aufgabe
Sei [mm] (a_n)_{n \in \IN} [/mm] eine durch M [mm] \in \IR [/mm] beschränkte Folge.

Zeige: ist [mm] a_1 \not= [/mm] 0, so hat [mm] f(x)=\summe_{n=1}^\infty a_nx^n [/mm] auf [mm] ]-\bruch{|a_1|}{M},\bruch{|a_1|}{M}[ [/mm] nur die Nullstelle x=0

Hallo,

die Aufgabe habe ich bis jetzt so weit gelöst:

Schreibe f(x)= [mm] a_1*x+g(x), [/mm] mit [mm] g(x)=x*\summe_{n=1}^\infty a_{n+1}x^n [/mm]

[mm] \Rightarrow [/mm] f(x)=0 [mm] \gdw a_1*x=x*\summe_{n=1}^\infty a_{n+1}x^n \gdw [/mm] x=0 oder [mm] a_1 [/mm] = [mm] \summe_{n=1}^\infty a_{n+1}x^n [/mm]

Warum aber die letzte Gleichung in [mm] ]-\bruch{|a_1|}{M},\bruch{|a_1|}{M}[ [/mm] keine Lösung hat, weiß ich nicht zu zeigen?!

Ich bin für jede Hilfe dankbar!

        
Bezug
eine Nullstelle: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:36 Mo 21.12.2009
Autor: max3000

Hallo.

dass x=0 Nullstelle ist hast du ja schon gezeigt. Da hätte es gereicht wenn du 0 einfach mal dort eingesetzt hättest.

Jetzt musst du noch zeigen, dass es keine andere Nullstelle in dem Intervall mehr gibt.

Was hattet ihr in der Vorlesung so für Sätze?
Vielleicht Zwischenwert-Satz oder sowas?
Kannst du mit Monotonie irgendwas zeigen?
Vielleicht hilft dir ja die erste Ableitung weiter.

Das wären jetzt meine ersten Ideen dazu.


Bezug
                
Bezug
eine Nullstelle: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 01:19 Di 22.12.2009
Autor: wee

Danke für die Antwort,


den Zwischenwertsatz hatten wir, mit Ableiten noch nichts.

Wie kann ich aber mit den ZWS argumentieren. Ich weiß schonmal, dass f(x) im Intervall [mm] ]-\bruch{|a_1|}{M},\bruch{|a_1|}{M}[ [/mm] stetig ist, also der ZWS anwendtbar ist.
DAnn weiß ich aber doch nur, dass f Nullstellen hat, oder noch mehr?

Bezug
                        
Bezug
eine Nullstelle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:36 Di 22.12.2009
Autor: wee

Also ein Korollar aus dem ZWS besagt, dass eine streng monotone, stetige Funktion Intervalle wieder auf Intervalle abbildet. Das heißt in diesem Fall, dass wenn man ziegt, dass die Funktion f(x) streng monoton ist im Intervall [mm] ]-\bruch{|a_1|}{M},\bruch{|a_1|}{M}[, [/mm] dann nimmt die Funktion nur eine Nullstelle an.

Schreibt man jetzt [mm] f(x)=\summe_{n=1}^\infty a_nx^n= a_1*x+x*\summe_{n=1}^\infty a_{n+1}x^n, [/mm] sieht man, der erste Summand a_1x klar streng monoton wachsend ist.

Beim zweiten Summand bin ich mir noch nicht sicher:

da [mm] a_n \leq [/mm] M [mm] \forall n\geq1 [/mm] kann man den Summanden [mm] x*\summe_{n=1}^\infty a_{n+1}x^n [/mm] mit der geometrischen Reihe abschätzen durch [mm] M*\bruch{x}{1-x}-1 [/mm] = [mm] M*\bruch{-1}{x-1}-2 [/mm]
Der Term ist für x [mm] \in ]-\bruch{|a_1|}{M},\bruch{|a_1|}{M}[ [/mm] auch streng monoton wachsend.

Aber ich weiß nicht ob ich jetzt schon alles gezeigt habe, denn ich habe das Gefühl, bei dem zweiten Summanden mit der Abschätzung noch nichts gezeigt zu haben?!

Hoffentlich kann mir hier jemand noch ein bisschen Klarheit verschaffen

Bezug
                                
Bezug
eine Nullstelle: Antwort
Status: (Antwort) fertig Status 
Datum: 11:47 Di 22.12.2009
Autor: fred97


> Also ein Korollar aus dem ZWS besagt, dass eine streng
> monotone, stetige Funktion Intervalle wieder auf Intervalle
> abbildet. Das heißt in diesem Fall, dass wenn man ziegt,
> dass die Funktion f(x) streng monoton ist im Intervall
> [mm]]-\bruch{|a_1|}{M},\bruch{|a_1|}{M}[,[/mm] dann nimmt die
> Funktion nur eine Nullstelle an.
>  
> Schreibt man jetzt [mm]f(x)=\summe_{n=1}^\infty a_nx^n= a_1*x+x*\summe_{n=1}^\infty a_{n+1}x^n,[/mm]
> sieht man, der erste Summand a_1x klar streng monoton
> wachsend ist.


Wie bitte ? Wenn [mm] a_1<0 [/mm] ist, so ist a_1x monoton fallend


>  
> Beim zweiten Summand bin ich mir noch nicht sicher:
>  
> da [mm]a_n \leq[/mm] M [mm]\forall n\geq1[/mm] kann man den Summanden
> [mm]x*\summe_{n=1}^\infty a_{n+1}x^n[/mm] mit der geometrischen
> Reihe abschätzen durch [mm]M*\bruch{x}{1-x}-1[/mm] =
> [mm]M*\bruch{-1}{x-1}-2[/mm]
>  Der Term ist für x [mm]\in ]-\bruch{|a_1|}{M},\bruch{|a_1|}{M}[[/mm]
> auch streng monoton wachsend.
>  
> Aber ich weiß nicht ob ich jetzt schon alles gezeigt habe,
> denn ich habe das Gefühl, bei dem zweiten Summanden mit
> der Abschätzung noch nichts gezeigt zu haben?!



So ist es !

Beispiel: für x [mm] \ge [/mm] 0 ist $sinx [mm] \le [/mm] x$

Die Funktion x ist streng monoton , der Sinus aber nicht

FRED

>  
> Hoffentlich kann mir hier jemand noch ein bisschen Klarheit
> verschaffen


Bezug
                                        
Bezug
eine Nullstelle: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:11 Di 22.12.2009
Autor: wee

Ok, da habe ich mich wirklich ein bisschen verrannt.

Aber [mm] a_1 [/mm] x ist jeden falls stremgmonoton für [mm] a_1 \not=0. [/mm]

Im Moment bleibt mir nur, für den anderen Summand, oder einer anderen Lösungsidee zu bitten.

Bezug
                                                
Bezug
eine Nullstelle: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Do 24.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
eine Nullstelle: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:23 Do 24.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
eine Nullstelle: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mi 23.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de