www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - einfache (?) DGL 2. Ordnung
einfache (?) DGL 2. Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

einfache (?) DGL 2. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:35 Mi 05.01.2011
Autor: karlhungus

Aufgabe
Gesucht ist die exakte Lösung der gewöhnlichen DGL

y´´ + y + 1 = 0, y(0) = y(1) = 0


Hallo,

diese ist eigentlich Teil einer größeren, anderen Aufgabe, in der das Problem numerisch gelöst werden soll, die direkte Lösung soll nur der Überprüfung dienen. Leider bin ich DGLen überhaupt nicht fit und habe nun per Internet versucht, den richtigen Ansatz zu finden.

Der sähe bei mir so aus:

1.) Charakteristische Gleichung

[mm] \lambda^2 [/mm] + 1 = 0 [mm] \gdw \lambda_{1,2} [/mm] = [mm] \pm [/mm] i

[mm] \Rightarrow y_{hom} [/mm] = [mm] e^{x} (c_{1}sin(x) [/mm] + [mm] c_{2}cos(x)) [/mm]

2.) Partikuläre Lösung (über den Polynomansatz "gefunden")

[mm] y_{p} [/mm] = -1

3.) Variation der Konstanten

[mm] y_{ges}(0) [/mm] = [mm] e^{0}(c_{1}sin(0)+c_{2}cos(0)) [/mm] - 1 [mm] =c_{2} [/mm] - 1 = 0 [mm] \gdw c_{2} [/mm] = 1

[mm] y_{ges}(1) [/mm] = [mm] e^{1}(c_{1}sin(1)+cos(1)) [/mm] - 1 = 0 [mm] \gdw c_{1} [/mm] = [mm] \bruch{-e*cos(1)+1}{e*sin(1)} \approx [/mm] -0.145088838

Und Schluß. Nun ist diese sehr umständlich berechnete Lösung leider wenig exakt - woran liegt das? Wenn mir jemand sagen könnte, wie der richtige Ansatz lautet oder, wo mein Fehler liegt, wäre ich sehr dankbar.

Gruß, Karl



        
Bezug
einfache (?) DGL 2. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Mi 05.01.2011
Autor: MathePower

Hallo karlhungus,

> Gesucht ist die exakt Lösung der gewöhnlichen DGL
>  
> y´´ + y + 1 = 0, y(0) = y(1) = 0
>  Hallo,
>  
> diese ist eigentlich Teil einer größeren, anderen
> Aufgabe, in der das Problem numerisch gelöst werden soll,
> die direkte Lösung soll nur der Überprüfung dienen.
> Leider bin ich DGLen überhaupt nicht fit und habe nun per
> Internet versucht, den richtigen Ansatz zu finden.
>  
> Der sähe bei mir so aus:
>  
> 1.) Charakteristische Gleichung
>  
> [mm]\lambda^2[/mm] + 1 = 0 [mm]\gdw \lambda_{1,2}[/mm] = [mm]\pm[/mm] i
>  
> [mm]\Rightarrow y_{hom}[/mm] = [mm]e^{x} (c_{1}sin(x)[/mm] + [mm]c_{2}cos(x))[/mm]


Die homogene Lösung dieser DGL lautet doch:

[mm]y_{hom} = c_{1}sin(x) + c_{2}cos(x)[/mm]


>  
> 2.) Partikuläre Lösung (über den Polynomansatz
> "gefunden")
>  
> [mm]y_{p}[/mm] = -1


[ok]


>  
> 3.) Variation der Konstanten


Hier meinst Du wohl "Bestimmung der speziellen Lösung".


>  
> [mm]y_{ges}(0)[/mm] = [mm]e^{0}(c_{1}sin(0)+c_{2}cos(0))[/mm] - 1 [mm]=c_{2}[/mm] - 1
> = 0 [mm]\gdw c_{2}[/mm] = 1
>  
> [mm]y_{ges}(1)[/mm] = [mm]e^{1}(c_{1}sin(1)+cos(1))[/mm] - 1 = 0 [mm]\gdw c_{1}[/mm] =
> [mm]\bruch{-e*cos(1)+1}{e*sin(1)} \approx[/mm] -0.145088838
>  
> Und Schluß. Nun ist diese sehr umständlich berechnete
> Lösung leider wenig exakt - woran liegt das? Wenn mir
> jemand sagen könnte, wie der richtige Ansatz lautet oder,
> wo mein Fehler liegt, wäre ich sehr dankbar.
>  
> Gruß, Karl
>  


Gruss
MathePower  

Bezug
                
Bezug
einfache (?) DGL 2. Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:03 Mi 05.01.2011
Autor: karlhungus


Bezug
                
Bezug
einfache (?) DGL 2. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Mi 05.01.2011
Autor: karlhungus

okay, da war ich woh etwas voreilig mit meiner mitteilung eben.

auch mit der neuen homogenen lösung ergibt sich für

[mm] y_{ges}(1)=c_{1}*sin(1)+cos(1)-1=0 \gdw c_{1} =\bruch{1-cos(1)}{sin(1)} \approx [/mm] 0.54630249

ist das die geforderte exakte lösung? sieht mir nicht so aus :-)

Bezug
                        
Bezug
einfache (?) DGL 2. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Mi 05.01.2011
Autor: MathePower

Hallo karlhungus,

> okay, da war ich woh etwas voreilig mit meiner mitteilung
> eben.
>  
> auch mit der neuen homogenen lösung ergibt sich für
>
> [mm]y_{ges}(1)=c_{1}*sin(1)+cos(1)-1=0 \gdw c_{1} =\bruch{1-cos(1)}{sin(1)} \approx[/mm]
> 0.54630249
>  
> ist das die geforderte exakte lösung? sieht mir nicht so
> aus :-)


Das ist auch nicht die exakte Lösung.

Die exakte Lösung der DGL sieht so aus:

[mm]y_{ges}(x)=\bruch{1-cos(1)}{sin(1)}*sin(x)+cos(x)-1[/mm]


Gruss
MathePower

Bezug
                                
Bezug
einfache (?) DGL 2. Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:35 Mi 05.01.2011
Autor: karlhungus

ja, das hab ich auch gemeint, mir schien dieser ausdruck einfach zu unschön, aber wenn es so ist, dann ist es so.

vielen dank in jedem fall.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de