www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik/Hypothesentests" - einseitiger H-Test Signifikanz
einseitiger H-Test Signifikanz < Statistik/Hypothesen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

einseitiger H-Test Signifikanz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:22 Di 30.09.2008
Autor: hase-hh

Aufgabe
Im Zusammenhang mit einseitigen Hypothesentests frage ich mich, warum die [mm] \sigma-Umgebung [/mm] hier anders ermittelt wird, als bei zweiseitigen Tests.

Beispiel:

Hypothese:  p [mm] \le [/mm] 0,5   für das Ertasten des Herkunftlandes von Euro-Münzen.

n= 20  ; Irrtumswahrscheinlichkeit [mm] \alpha [/mm] = 5%.

Im Buch finde ich folgende Lösung:

=> [mm] \mu [/mm] = 10  ; [mm] \sigma [/mm] = 2,24

Annahmebereich  A = [0;13,67]  

Die Wahrscheinlichkeit für einen Fehler 1. Art:

1 - [mm] F_{20;0,5} [/mm] (13) = 1 - 0,9423 = 0,0577  
  




Moin,

zunächst sind einseitige Tests dadurch gekennzeichnet, dass ich einen Bereich suche bzw. eine Grenze bis zu der eine Hypothese angenommen bw. abgelehnt wird.

Während bei zweiseitigen Tests um einen mittleren Wert herum ein Annahmebereich gebildet wird...


Bei der Lösung habe ich zwei Dinge nicht verstanden.

1. Gehe ich vom Annahmebereich aus, dann berechne ich den Wert der Verteilungsfunktion [mm] F_{20;0,5} [/mm] (13)

und dieser hat den Wert ---> 0,9793   und nicht 0,9423 !???

bzw.   1 - [mm] F_{20;0,5} [/mm] (13) = 1 - 0,9793 = 0,0207  


2. Bei der Berechnung des Intervalls wurde mit

[mm] \mu [/mm] + 1,64* [mm] \sigma [/mm]   gerechnet und nicht mit

[mm] \mu [/mm] + 1,96* [mm] \sigma [/mm]  , was ja für 5% Irrtumswahrscheinlichkeit gilt.

Warum nicht???

Vielen Dank für eure Hilfe!


        
Bezug
einseitiger H-Test Signifikanz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Di 30.09.2008
Autor: rabilein1

Ich weiß nicht, ob ich dir konkret weiterhelfen kann, denn die genannten Formeln sagen mir nichts, und die Zahlen kann ich auch nicht nachvollziehen, weil ich weder entsprechenden Tabellen vorliegen habe noch einen Computer, der so etwas ausrechnet.


Aber wenn ich es richtig verstanden habe, dann heißt

> Hypothese: p [mm] \le [/mm]  0,5  für das Ertasten des Herkunftlandes von Euro-Münzen.
> n= 20  ; Irrtumswahrscheinlichkeit : 5%"

auf gut Deutsch:
"Wie oft muss ich bei 20 Versuchen eine Münze richtig ertasten, damit die Behauptung, dass man weniger als 50 % der Münzen ertasten kann, mit weniger als 5%iger Wahrscheinlichkeit falsch ist?"

Mein Lösungsansatz wäre, dass man - mit Hilfe von Tabelle bzw. Computerprogramm - ermittelt, wie groß bei einer Fifty-Fifty-Chance die Wahrscheinlichkeit ist, dass man von 20 Versuchen Null Mal, 1 Mal, 2 Mal, ... 19 Mal, 20 Mal richtig liegt.

Und dann müsste man die Einzelergebnisse aufaddieren, also z.B. mindestens 10 Mal, mindestens 11 Mal, mindestens 12 Mal etc.

Ab welcher Zahl kommt man dann darauf, dass es weniger als 5 % sind, die als Irrtum übrig bleiben?

So viel ich weiß, gibt es so tolle Taschenrechner, die das Ergebnis nach wenigen Tastendrücken ausspucken.

Was genau wird denn berechnet, wenn du [mm] F_{20;0.5} [/mm] (13) eingibst ??
Ich meine nicht, welche Zahl da raus kommt, sondern was für eine Rechenoperation ausgelöst wird.






Bezug
        
Bezug
einseitiger H-Test Signifikanz: Antwort
Status: (Antwort) fertig Status 
Datum: 01:28 Do 02.10.2008
Autor: Marc

Hallo hase-hh,

> zunächst sind einseitige Tests dadurch gekennzeichnet, dass
> ich einen Bereich suche bzw. eine Grenze bis zu der eine
> Hypothese angenommen bw. abgelehnt wird.
>
> Während bei zweiseitigen Tests um einen mittleren Wert
> herum ein Annahmebereich gebildet wird...
>
>
> Bei der Lösung habe ich zwei Dinge nicht verstanden.
>
> 1. Gehe ich vom Annahmebereich aus, dann berechne ich den
> Wert der Verteilungsfunktion [mm]F_{20;0,5}[/mm] (13)
>
> und dieser hat den Wert ---> 0,9793   und nicht 0,9423
> !???

Laut []http://www.arndt-bruenner.de/mathe/scripts/normalverteilung1.htm#binvert ist
[mm] $F_{20;0.5}(13)=0,9423$ [/mm] und
[mm] $F_{20;0.5}(14)=0,9793$. [/mm]

Manchmal ist [mm] $F_{20;0.5}(k)$ [/mm] nicht definiert als [mm] $P(X\le [/mm] k)$ (wie in der Lösung und in der zitierten Tabelle), sondern als $P(X<k)$. Vielleicht kommt daher deine Verwirrung?

> bzw.   1 - [mm]F_{20;0,5}[/mm] (13) = 1 - 0,9793 = 0,0207  
>
>
> 2. Bei der Berechnung des Intervalls wurde mit
>
> [mm]\mu[/mm] + 1,64* [mm]\sigma[/mm]   gerechnet und nicht mit
>
> [mm]\mu[/mm] + 1,96* [mm]\sigma[/mm]  , was ja für 5%
> Irrtumswahrscheinlichkeit gilt.
>
> Warum nicht???

Bei den Sigma-Intervallen musst du nach einseitigen und zweiseitigen Tests unterscheiden, d.h., bei einer Irrtumswahrscheinlichkeit von 5% ergibt sich bei zweiseitigen Test der Annahmebereich [mm] $[\mu [/mm] - 1,96* [mm] \sigma,\mu [/mm] + 1,96* [mm] \sigma]$, [/mm] bei einem rechtsseitigen Test dagegen [mm] $[0,\mu [/mm] + 1,64* [mm] \sigma]$. [/mm]
Bei einem zweiseitigen Test wird die Irrtumswahrscheinlichkeit ja zur Hälfte auf den linken und rechten Ablehnungsbereich aufgeteilt, während es bei einem rechtsseitigen Test nur einen Ablehnungsbereich gibt, der deswegen größer ist.

Oder anders gesagt:
Bei einem zweiseitigen Test mit Irrtumswahrscheinlichkeit 10% lautet der Annahmebereich: [mm] $[\mu [/mm] - 1,64* [mm] \sigma,\mu [/mm] + 1,64* [mm] \sigma]$ [/mm]
Bei einem rechtsseitigen Test mit Irrtumswahrscheinlichkeit 5% lautet der Annahmebereich: [mm] $[0,\mu [/mm] + 1,64* [mm] \sigma]$ [/mm]
(in beiden Fällen befindet sich rechts sozusagen eine Ablehnungsbereich mit Wahrscheinlichkeit 5%.)

Viele Grüße,
Marc

Bezug
                
Bezug
einseitiger H-Test Signifikanz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:15 Do 02.10.2008
Autor: rabilein1

Aufgabe
> [mm]F_{20;0.5}(13)=0,9423[/mm] und
>  [mm]F_{20;0.5}(14)=0,9793[/mm].

Was genau wird denn da gerechnet, um auf diese Werte zu kommen?
Die fallen ja nicht einfach so vom Himmel !

Meines Erachtens muss das so sein, wie ich es schon weiter oben erwähnte: Dass es die Addition der Einzelwahrscheinlichkeiten ist.


Und diese Einzelwahrscheinlichkeiten werden wiederum nach der "Toto-Formel" berechnet:

Z.B ist die Wahrscheinlichkeit, 12 (von 13) Richtige im Toto (Gewinnwahrscheinlichkeit 1:3) zu haben:
[mm] 0.3333^{12}*0.6667^{1}*13 [/mm]

Oder:  Die Wahrscheinlichkeit, 11  Richtige im Toto  zu haben, ist
[mm] 0.3333^{11}*0.6667^{2}*\bruch{13*12}{2} [/mm]

Wenn man das dann alles aufaddiert, so ist das eine mühselige Rechnung. Um den Leuten diese Arschleder-Arbeit abzunehmen, gibt es dann diese Programme, die das erledigen. Aber meistens ist gar nicht klar, wie das Programm auf die Zahlen kommt.

Bezug
                        
Bezug
einseitiger H-Test Signifikanz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:15 Do 02.10.2008
Autor: Marc

Hallo rabilein1,

> > [mm]F_{20;0.5}(13)=0,9423[/mm] und
>  >  [mm]F_{20;0.5}(14)=0,9793[/mm].
>  
> Was genau wird denn da gerechnet, um auf diese Werte zu
> kommen?
> Die fallen ja nicht einfach so vom Himmel !

Ich weiß jetzt nicht, ob du eine Antwort auf diese Frage haben willst, deswegen zur Sicherheit:

[mm] $F_{20;0.5}(13)=B_{20;0.5}(0)+B_{20;0.5}(1)+\ldots+B_{20;0.5}(13)$ [/mm]

wobei

[mm] $B_{20;0.5}(k):={20\choose k} 0.5^k *0.5^{20-k}$ [/mm]

Schwierig zu berechnen sind dabei höchstens die Binomialkoeffizienten [mm] ${20\choose k}$, [/mm] da die Fakultäten recht gross werden können, aber da kann man auch geschickt vorgehen oder Näherungsformeln benutzen.

Zum Aufstellen einer kompletten Tabelle kann man folgenden Zusammenhang ausnutzen:
[mm] $F_{20;0.5}(0)=B_{20;0.5}(0)$ [/mm]
[mm] $F_{20;0.5}(1)=F_{20;0.5}(0)+B_{20;0.5}(1)$ [/mm]
[mm] $F_{20;0.5}(2)=F_{20;0.5}(1)+B_{20;0.5}(2)$ [/mm]
[mm] $F_{20;0.5}(3)=F_{20;0.5}(2)+B_{20;0.5}(3)$ [/mm]
[mm] $\vdots$ [/mm]
[mm] $F_{20;0.5}(14)=F_{20;0.5}(13)+B_{20;0.5}(14)$ [/mm]

>  Meines Erachtens muss das so sein, wie ich es schon weiter
> oben erwähnte: Dass es die Addition der
> Einzelwahrscheinlichkeiten ist.

Genau!

> Und diese Einzelwahrscheinlichkeiten werden wiederum nach
> der "Toto-Formel" berechnet:
>  
> Z.B ist die Wahrscheinlichkeit, 12 (von 13) Richtige im
> Toto (Gewinnwahrscheinlichkeit 1:3) zu haben:
>  [mm]0.3333^{12}*0.6667^{1}*13[/mm]
>  
> Oder:  Die Wahrscheinlichkeit, 11  Richtige im Toto  zu
> haben, ist
>  [mm]0.3333^{11}*0.6667^{2}*\bruch{13*12}{2}[/mm]
>  
> Wenn man das dann alles aufaddiert, so ist das eine
> mühselige Rechnung. Um den Leuten diese Arschleder-Arbeit
> abzunehmen, gibt es dann diese Programme, die das
> erledigen. Aber meistens ist gar nicht klar, wie das
> Programm auf die Zahlen kommt.

Es sollte ungefähr so funktionieren wie oben vorgestellt.

Viele Grüße,
Marc

Bezug
                        
Bezug
einseitiger H-Test Signifikanz: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:29 Do 02.10.2008
Autor: rabilein1

Was ich "komisch" finde, ist allerdings Folgendes:

Die Differenz zwischen "14 Treffer" und "13 Treffer" beträgt 0.037
(0.9793 minus 0.9423). Auf so einen Wert komme ich allerdings gar nicht, wenn ich die Wahrscheinlichkeiten der Einzel-Ereignisse berechne:

p(13) ist 0.1200
p(14) ist 0.0793
p(15) ist 0.0148


Berechungsmethode für z.B. p(14) ist:  

[mm] 0.5^{20}*\bruch{20*19*18*17*16*15*14}{1*2*3*4*5*6*7} [/mm] = 0.074

Anstelle von [mm] 0.5^{20} [/mm] müsste man eigentlich schreiben: [mm] 0.5^{14}*0.5^{6} [/mm]

Bezug
                                
Bezug
einseitiger H-Test Signifikanz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:42 Do 02.10.2008
Autor: Marc

Hallo

> Berechungsmethode für z.B. p(14) ist:  
>
> [mm]0.5^{20}*\bruch{20*19*18*17*16*15*14}{1*2*3*4*5*6*7}[/mm] =
> 0.074

Dein Bruch sieht nach [mm] ${20\choose 13}$ [/mm] aus und nicht nach [mm] ${20\choose 14}$. [/mm]

Marc

Bezug
                                        
Bezug
einseitiger H-Test Signifikanz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:58 Do 02.10.2008
Autor: rabilein1


> Dein Bruch sieht nach [mm]{20\choose 13}[/mm] aus und nicht nach
> [mm]{20\choose 14}[/mm].

Ja, dann verschiebt sich das alles eben um 1.

Trotzdem taucht die Differenz von 0.037 (die ja eigentlich zwischen 13 und 14 liegen sollte) nirgends auf.

Bezug
                                                
Bezug
einseitiger H-Test Signifikanz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:10 Fr 03.10.2008
Autor: Marc


> > Dein Bruch sieht nach [mm]{20\choose 13}[/mm] aus und nicht nach
> > [mm]{20\choose 14}[/mm].
>  
> Ja, dann verschiebt sich das alles eben um 1.
>  
> Trotzdem taucht die Differenz von 0.037 (die ja eigentlich
> zwischen 13 und 14 liegen sollte) nirgends auf.  

[mm] $0.5^{20}*{20\choose 14}=0.5^{20}*\bruch{20*19*18*17*16*15}{1*2*3*4*5*6}=0.03696441650390625$ [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de