www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - endliche abelsche Gruppe
endliche abelsche Gruppe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

endliche abelsche Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:10 So 22.10.2006
Autor: VHN

Aufgabe
Beweise bzw. widerlege folgende aussage:
A) alle endlichen gruppen mit weniger als 5 elemente sind abelsch.
B) Eine endliche gruppe mit 6 elementen ist abelsch.

Hallo Forum!

die aufgabe sieht zwar sehr einfach aus, dennnoch ist mir nicht klar, wie ich die aussagen beweisen (widerlegen) soll.
könnt ihr mir bitte helfen und zeigen, wie ich die aufgabe löse?
ich denke, wenn ich das prinzip für die A verstanden habe, schaffe ich die B auch.

vielen dank für eure hilfe!
VHN

        
Bezug
endliche abelsche Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 00:52 So 22.10.2006
Autor: angela.h.b.


> Beweise bzw. widerlege folgende aussage:
>  A) alle endlichen gruppen mit weniger als 5 elemente sind
> abelsch.
>  B) Eine endliche gruppe mit 6 elementen ist abelsch.

Hallo,

zu A.
Die Anzahl der Gruppen mit höchstens vier Elementen ist ja recht übersichtlich, und ich vermute, daß diese Gruppen bereits besprochen wurden.
Bis auf Isomorphie gibt es ja jeweils nur eine Gruppe mit 1,2,3 Elementen,
von Gruppen mit 4 Elementen haben wir zwei.
Da kannst Du ja einfach nachgucken, ob sie abelsch sind. In der Gruppentafel siehst Du es an der Symmetrie zur Diagonalen.

zu B) Es ist wohlgemerkt nicht jede sechselementige Gruppe abelsch.
Welche sechselementigen Gruppen kennst Du?
Wenn Du keine kennst, mach Dir selbst eine, z.B. mit den Restklassen mod 6 und der Addition, und prüfe, ob sie abelsch ist. Wenn ja, bist Du fertig, sonst: weitersuchen...
(Auch von den sechselementigen Gruppen gibt es bis auf Isomorphie nur zwei, was aber vielleicht noch nicht dran war.)

Gruß v. Angla



Bezug
                
Bezug
endliche abelsche Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:04 Di 24.10.2006
Autor: VHN

hallo angela!

vielen dank für deine antwort.
allerdings hätte ich noch eine frage zur B:

ich hab jetzt festgestellt, dass die restgruppen von mod 6 eine abelsche gruppe ist.
da aber anscheinend nicht jede menge aus 6 elementen abelsch ist, muss es doch auch ein gegenbeispiel dafür geben.
kannst du mir vllt verraten, was so ein gegenbsp. wäre? ich komme einfach nicht drauf.

vielen dank nochmals!
VHN

Bezug
                        
Bezug
endliche abelsche Gruppe: Antwort. Editiert.
Status: (Antwort) fertig Status 
Datum: 00:10 Mi 25.10.2006
Autor: angela.h.b.


>  kannst du mir vllt verraten, was so ein gegenbsp. wäre?
> ich komme einfach nicht drauf.

Das Standardbeispiel für die nichtabelsche Gruppe der Ordnung 6 ist Die Gruppe [mm] S_6. [/mm]  

Die enthält die Abbildungen des Gleichseitigen Dreiecks auf sich (Verknüpfung: Hintereinanderausführung)
Die Abb. sind die Identität, Drehung um den Mittelpunkt um 120°, um 240°, und die drei Spiegelungen an den Winkelhalbierenden.
Es macht einen Unterschied, ob Du erst spiegelst und dann drehst, oder umgekehrt.

Gruß v. Angela

Bezug
                                
Bezug
endliche abelsche Gruppe: kleiner Tippfehler
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:38 Mi 25.10.2006
Autor: felixf

Hallo Angela,

> Das Standardbeispiel für die nichtabelsche Gruppe der
> Ordnung 6 ist Die Gruppe [mm]S_6.[/mm]

du meinst [mm] $S_3$, [/mm] da die gerade $3! = 3 [mm] \cdot [/mm] 2 = 6$ Elemente hat :-)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de