www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - erzeugende Funktion
erzeugende Funktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

erzeugende Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 So 15.04.2007
Autor: lck

Aufgabe
Man berechne den Mittelwert der Binomitalverteilung und die mittlere quadratische Abweichung!Dazu berechne man die erzeugende Funktion [mm] F(x)=\summe_{n=0}^{N} [/mm] W(n) [mm] x^{n} [/mm] und erhalte die gewünschten Mittelwerte gemäß <n>=(d/dx)(F(x=1)) etc.

[mm] W(n)=\bruch{N!}{n!(N-n)!}p^{n} (1-o)^{N-n} [/mm]

Hi!
Ich weiß irgendwie überhaupt nicht wie ich hier ansetzen soll!Hab noch nie mit erzeugenden Funktionen gearbeitet! Hat jemand eine Idee?

Gruß
Lck

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
erzeugende Funktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:58 So 15.04.2007
Autor: lck

Vielleicht sollte ich mein Frage etwas konkretisieren!

Hab F(X) ausgerechnet und einmal nach x abgeleitet und dann für x werte von 1-3 eingesetzt!Und was bringt mir das? Erkenne nicht wie mich das weiterbringen soll!
Ich soll doch zum Schluß auf den erwartungswert von n*p kommen oder hab ich das falsch verstanden?

Gruß
LCK

Bezug
        
Bezug
erzeugende Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 So 15.04.2007
Autor: Volker2

Hallo,

ganz einfach. Man muß es halt einmal gesehen haben:

[mm] F'(x)=\summe_{n=0}^{N} [/mm] W(n) [mm] nx^{n-1} [/mm]

Also

F'(1)= [mm] \summe_{n=0}^{N} [/mm]  W(n)n=<n>.

Du mußt das jetzt nur noch in Deiner Situation anwenden. Dazu vereinfache doch, falls Du es nicht schon getan hast, F(x) mit der binomischen Formel BEOVR Du ableitest und setze dann x=1 ein. Damit hast Du den Erwartungswert E=pN. Analog gilt

F''(1)= [mm] \summe_{n=0}^{N} [/mm]  W(n) [mm] n(n-1)=\summe_{n=0}^{N} [/mm]  W(n) [mm] n^2-E=E(n^2)-E [/mm]
und mit etwas Bastelei kann die Varianz berechnet werden. Tipp

[mm] Var(n)=E(n^2)-E(n)^2=E(n^2)-E^2 [/mm]

Das Ergebnis sollte natürlich Npq=Np(1-p) sein.

Volker

Bezug
                
Bezug
erzeugende Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 So 15.04.2007
Autor: lck

hi!

Danke für deine Hilfe!

Ich weiß irgendwie nicht was du mit vereinfachen meinst?Hier kann man die Binomische Formel doch gar nicht anwenden!wenn ich dich richtig verstanden habe, dann soll W(n) also vereinfacht p ergeben?Da bin ich noch meilenweilt von entfernt!

Fürchte ich brauch also noch eine weitere kleine Hilfestellung!

gruß
lck

Bezug
                        
Bezug
erzeugende Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 So 15.04.2007
Autor: Volker2

Es gilt

[mm] F(x)=(px+q)^N [/mm]

oder so ähnlich. Volker

Bezug
                                
Bezug
erzeugende Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 So 15.04.2007
Autor: lck

hi!

Tut mir leid aber irgendwie komm ich damit auch nicht weiter!Und dabei hab ich gelsen das das mit den erzeugenden Funktionen so einfach sein soll!
Wie vereinfache ich?

Bezug
                                        
Bezug
erzeugende Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 So 15.04.2007
Autor: Volker2

Du musst einfach nur noch ableiten und x=1 setzen:

[mm] F'(x)=Np(px+q)^{N-1} [/mm]

[mm] \Rightarrow =F'(1)=Np(p+q)^{N-1}=Np\cdot 1^{N-1}=Np [/mm]

wegen p+q=1. Analog für die quadratische Abweichung.

Volker

Bezug
                                                
Bezug
erzeugende Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 So 15.04.2007
Autor: lck

Hi!

Achso meinst du das! Ich hab zwar den Erwartungswert jetzt auf einem anderen Wege ausgerechnet, aber dein Ansatz ist natürlich viel viel einfacher!
hab trotzdem noch mal 2 fragen:
(1) woher weißt du das p+q=1 ist?
(2) bei der varianz komm ich nicht auf das richtige ergebnis:

F´´(x)=Np (N-1) [mm] (px+q)^{N-2}*p [/mm]
=> F´´(1)= Np²(N-1) und das ist nicht dasselbe wie Np(1-P)
Wüßte nicht wo mein Fehler liegt?!

Gruß und ein großes Dankeschön sendet
LCK

Bezug
                                                        
Bezug
erzeugende Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 So 15.04.2007
Autor: Volker2

Hallo,

q=1-p ist einfach eine Konvention in unserer Situation. Zur zweiten Frage folgendes:

[mm] F''(1)=E(n^2)-E(n), [/mm]

aber wir wollen ja [mm] V(n)=E(n^2)-E(n)^2 [/mm] haben. Also

[mm] V(n)=F''(1)+E(n)-E(n)^2=p^2N(N-1)+pN-p^2N^2=pN(pN-p+1-pN)=pN(1-p) [/mm]

wie es sein soll. Ich würde mir die Sache übrigens nicht mit der char. Funktion überlegen, sondern mir denken, dass N-mal unabhängig ein Bernoulli Experiment(heißt das so?) durchgeführt wird und man dann aufsummiert. Damit sind aber Erwartungswert und quadratische Abweichung des N-fachen Versuchs  genau das N-fache der entsprechenden Werte für den einmaligen Versuch, der trivialerweise den Erwartungswert p und die Varianz p(1-p) hat.

Volker


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de