www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - erzeugnis Hauptideal Polynom R
erzeugnis Hauptideal Polynom R < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

erzeugnis Hauptideal Polynom R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Do 18.07.2013
Autor: SaskiaCl

Aufgabe
[mm] f=t^{4}-t^{3}-t+1, [/mm] und  [mm] g=t^{3}+t+1 [/mm] in Z/3Z
a) Bestimmen sie einen Erzeuger des Haupideals I=<f,g>
b) Ist [mm] h=t^{10025}+2t^{17}-2t^{2}+1 [/mm] in I enthalten

Hallo,
die erste Aufgabe konnte ich bereits lösen indem ich mit Hilfe des Euklidischen Algorithmus den ggT(f,g)=I=(t-1) ermittelt habe.
Normalerweise würde ich nun einfach (mit Polynom Division) über prüfen ob h ein vielfaches von I ist.

Dies ist hier aber wohl nicht gefragt, könnte mir jemand einen Tipp geben wie ich hier vorgehen sollte.

Danke
Saskia


        
Bezug
erzeugnis Hauptideal Polynom R: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Do 18.07.2013
Autor: hippias


> [mm]f=t^{4}-t^{3}-t+1,[/mm] und  [mm]g=t^{3}+t+1[/mm] in Z/3Z
>  a) Bestimmen sie einen Erzeuger des Haupideals I=<f,g>
>  b) Ist [mm]h=t^{10025}+2t^{17}-2t^{2}+1[/mm] in I enthalten
>  Hallo,
>  die erste Aufgabe konnte ich bereits lösen indem ich mit
> Hilfe des Euklidischen Algorithmus den ggT(f,g)=I=(t-1)
> ermittelt habe.

Achtung: $I$ ist ein Ideal und $ggT(f,g)$ ein (bis auf Assoziiertheit eindeutig bestimmtes) Polynom. $ggt(f,g)= I$ ist also nicht richtig, aber $I$ wird von $ggT(f,g)$ erzeugt.

>  Normalerweise würde ich nun einfach (mit Polynom
> Division) über prüfen ob h ein vielfaches von I ist.

Doch, das kannst Du genauso machen. Es wuerde aber auch genuegen zu ueberpruefen, ob $1$ eine Nullstelle von $h$ ist.

>  
> Dies ist hier aber wohl nicht gefragt, könnte mir jemand
> einen Tipp geben wie ich hier vorgehen sollte.
>  
> Danke
>  Saskia
>  


Bezug
                
Bezug
erzeugnis Hauptideal Polynom R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 Do 18.07.2013
Autor: SaskiaCl


> >  Normalerweise würde ich nun einfach (mit Polynom

> > Division) über prüfen ob h ein vielfaches von I ist.
>  Doch, das kannst Du genauso machen. Es wuerde aber auch
> genuegen zu ueberpruefen, ob [mm]1[/mm] eine Nullstelle von [mm]h[/mm] ist.

Wahrscheinlich übersehe ich etwas aber das ist eine Riesen PD. Wie kann ich am effektivsten vorgehen?
Ich vermute das ich es über die Eigenschaft der mod 3 Rechnung lösen kann, aber etwas explizites sehe ich leider nicht


Bezug
                        
Bezug
erzeugnis Hauptideal Polynom R: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Do 18.07.2013
Autor: hippias

Wie bereits erwaehnt genuegt es zu pruefen, ob $1$ eine Nullstelle von $h$ ist, denn es gilt ja der schoene Satz: $h(1)= [mm] 0\iff [/mm] (t-1)|h$.

Bezug
                                
Bezug
erzeugnis Hauptideal Polynom R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Do 18.07.2013
Autor: SaskiaCl

H(I)=(t-1)^10025 +2(t-1)^17 [mm] -2(t-1)^2 =(\summe_{k=o}^{10025}\vektor{10025 \\ k}(-1)^kt^{n-k} [/mm] +)2*( [mm] \summe_{k=o}^{17}\vektor{17 \\ k}(-1)^kt^{n-k}) -2t^2 [/mm] +t-2 = ...

das wird wohl nicht zum Ziel führen, was übersehe ich?

Bezug
                                        
Bezug
erzeugnis Hauptideal Polynom R: Antwort
Status: (Antwort) fertig Status 
Datum: 08:31 Fr 19.07.2013
Autor: hippias


> H(I)=(t-1)^10025 +2(t-1)^17 [mm]-2(t-1)^2 =(\summe_{k=o}^{10025}\vektor{10025 \\ k}(-1)^kt^{n-k}[/mm]
> +)2*( [mm]\summe_{k=o}^{17}\vektor{17 \\ k}(-1)^kt^{n-k}) -2t^2[/mm]
> +t-2 = ...
>
> das wird wohl nicht zum Ziel führen, was übersehe ich?

Doch, ist auch ein moeglicher Ansatz, nur es stimmt ja nicht, dass $h= (t-1)^10025 +2(t-1)^17 [mm] -2(t-1)^2$ [/mm] ist. Du muesstest dann eher den Ansatz $h= (t-1)^10025 +a(t-1)^17 [mm] +b(t-1)^2+c$, [/mm] dann ausmultiplizieren und dann Koeffizientenvergleich machen. Schoener als Polynomdivision wird das aber auch nicht.
Wenn Du unbedingt teilen moechtest, dann wende doch diese Formel fuer die geometrische Reihe an: [mm] $t^{n}-1= (t-1)\sum_{i=0}^{n-1} t^{i}$. [/mm] Zum Beispiel ist [mm] $t^{3}-5t^{2}+2= t^{3}-1+1-5(t^{2}-1+1)+2= t^{3}-1-5(t^{2}-1)-2= (t-1)(t^{2}+t+1)-5(t-1)(t+1)-2= (t-1)(t^{2}-4t-4)-2$, [/mm] d.h. [mm] $t^{3}-5t^{2}+2$ [/mm] geteilt durch $t-1$ ergibt [mm] $t^{2}-4t-4$ [/mm] mit dem Rest $-2$.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de