www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - eulerphi mit inklusion/ex.
eulerphi mit inklusion/ex. < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eulerphi mit inklusion/ex.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 Mo 30.01.2012
Autor: Schadowmaster

Aufgabe
Sei $n [mm] \in \IN$, [/mm] n>1 und [mm] $n=p_1^{a_1}*p_2^{a_2}*\cdots [/mm] * [mm] p_k^{a_k}$ [/mm] die Primfaktorzerlegung von $n$ (die [mm] $p_i$ [/mm] also paarweise verschieden und alles was dazugehört).
Man zeige mit Hilfe des Inklusions-Exklusionsprinzips:
[mm] $|E(\IZ/n\IZ)| [/mm] = [mm] n\prod_{i=1}^k (1-p_i^{-1})$ [/mm]

moin,

Bei obiger Aufgabe habe ich grad so meine Probleme.
Der Beweis der Identität ist nicht weiter schwierig, wenn ich Wissen aus der Zahlentheorie voraussetzen dürfte.
Allerdings stammt diese Aufgabe aus einer Anfängervorlesung und die Phifunktion ist hier noch nicht bekannt.
Das einzige, was für den Beweis benutzt werden darf, ist die Tatsache, dass
[mm] $|E(\IZ/n\IZ)| [/mm] = | [mm] \{ k \in \IN : 1 \leq k \leq n, ggT(k,n)=1 \} [/mm] |$.
Inklusions-Exklusions-technisch wollte ich es versuchen mit:
[mm] $\IZ_n$ [/mm] hat $n$ Elemente.
Davon sind [mm] $\left[ \frac{n}{p_1} \right]$ [/mm] durch [mm] $p_1$ [/mm] teilbar, etc.

Das bringt mich allerdings nur auf eine große Summe, aber bei weitem nicht auf das gewünschte Produkt.

Wenn jemand einen feinen Weg sieht, wie man die Aussage einzig mit "logischen Überlegungen" und ohne zahlentheoretisches Vorwissen lösen kann wäre das echt praktisch.

thx schonmal

lg

Schadow

        
Bezug
eulerphi mit inklusion/ex.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Mo 30.01.2012
Autor: felixf

Moin Schadow!

> Sei [mm]n \in \IN[/mm], n>1 und [mm]n=p_1^{a_1}*p_2^{a_2}*\cdots * p_k^{a_k}[/mm]
> die Primfaktorzerlegung von [mm]n[/mm] (die [mm]p_i[/mm] also paarweise
> verschieden und alles was dazugehört).
>  Man zeige mit Hilfe des Inklusions-Exklusionsprinzips:
>  [mm]|E(\IZ/n\IZ)| = n\prod_{i=1}^k (1-p_i^{-1})[/mm]
>  moin,
>  
> Bei obiger Aufgabe habe ich grad so meine Probleme.
>  Der Beweis der Identität ist nicht weiter schwierig, wenn
> ich Wissen aus der Zahlentheorie voraussetzen dürfte.
>  Allerdings stammt diese Aufgabe aus einer
> Anfängervorlesung und die Phifunktion ist hier noch nicht
> bekannt.
>  Das einzige, was für den Beweis benutzt werden darf, ist
> die Tatsache, dass
>  [mm]|E(\IZ/n\IZ)| = | \{ k \in \IN : 1 \leq k \leq n, ggT(k,n)=1 \} |[/mm].
>  
> Inklusions-Exklusions-technisch wollte ich es versuchen
> mit:
>  [mm]\IZ_n[/mm] hat [mm]n[/mm] Elemente.
>  Davon sind [mm]\left[ \frac{n}{p_1} \right][/mm] durch [mm]p_1[/mm] teilbar,
> etc.

Genau. So wuerde ich damit anfangen.

Sei [mm] $A_{i_1, \dots, i_k}$ [/mm] die Anzahl der Restklassen $x + [mm] n\IZ$ [/mm] mit $0 [mm] \le [/mm] x < n$ und [mm] $p_{i_1}, \dots, p_{i_k} \mid [/mm] x$.

Dann ist $n - [mm] |E(\IZ/n\IZ)| [/mm] = [mm] \sum_{m=1}^k \underset{1 \le i_1 < \dots < i_m \le n}{\sum\cdots\sum} (-1)^{m-1} A_{i_1, \dots, i_k}$. [/mm] Jetzt ist [mm] $A_{i_1, \dots, i_k} [/mm] = [mm] \frac{n}{p_{i_1} \cdots p_{i_k}}$, [/mm] womit also [mm] $|E(\IZ/n\IZ)| [/mm] = n + [mm] \sum_{m=1}^k \underset{1 \le i_1 < \dots < i_m \le n}{\sum\cdots\sum} (-1)^m \frac{n}{p_{i_1} \cdots p_{i_m}}$ [/mm] ist.

Das kannst du jetzt schreiben als $n [mm] \sum_{e_1=0}^1 \cdots \sum_{e_k=0}^1 (-1)^{e_1 + \cdots + e_k} \frac{1}{p_1^{e_1} \cdots p_k^{e_k}}$. [/mm]

Das kannst du jetzt mit dem Distributivgesetz schreiben als $n [mm] \cdot \prod_{i=1}^k [/mm] (...)$, und das in den Klammern sollte sich wie gewuenscht vereinfachen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de