exp(A), eigenwerte,-vektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:16 So 08.05.2016 | Autor: | sissile |
Aufgabe | Beweise:
A vector u is an eigenvektor of [mm] A\in M_{n\times n} (\mathbb{C}) [/mm] corresponding to the eigenvalue [mm] \lambda [/mm] if and only if u is an eigenvector of exp(A) corresponding to the eigenvalue [mm] e^{\lambda}. [/mm] |
Hallo,
Sei u Eigenvektor von A zum Eigenwert [mm] \lambda [/mm] so gilt:
A u= [mm] \lambda [/mm] u
[mm] A^2 [/mm] u = A (A u) = A [mm] (\lambda u)=\lambda [/mm] A(u)= [mm] \lambda*\lambda [/mm] u= [mm] \lambda^2 [/mm] u
Induktiv folgt für n [mm] \in \mathbb{N}:A^n [/mm] u = [mm] \lambda^n [/mm] u
Daraus folgt [mm] e^A [/mm] u = [mm] (\sum_{k=0}^\infty \frac{1}{k!} A^k)u [/mm] = [mm] \sum_{k=0}^\infty \frac{1}{k!} A^k [/mm] (u)= [mm] \sum_{k=0}^\infty \frac{1}{k!} \lambda^k [/mm] u = [mm] e^k [/mm] u
Also ist [mm] e^A [/mm] *u = [mm] e^\lambda [/mm] u, also u Eigenvektor von exp(A)zum Eigenwert [mm] e^\lambda
[/mm]
1 Frage:
Ich bin mir nicht sicher ob der Schritt: [mm] (\sum_{k=0}^\infty \frac{1}{k!} A^k)u [/mm] = [mm] \sum_{k=0}^\infty \frac{1}{k!} A^k [/mm] (u) in Ordnung ist da ich eine Reihe habe. Bei einer Summe würde ich mit Linearität argumentieren aber hier? Die Konvergenz der Reihe ist mir bewusst.
2 Frage:
Nun bin ich noch am Grübeln wie ich die andere Richtung beweise!
Sei [mm] e^A [/mm] *u = [mm] e^\lambda [/mm] u.
Ich habe versuch mit der Jordanschen Normalform zu arbeiten:
Bilde ich die Jordansche Normalform von A: [mm] A=UJU^{-1}, [/mm] d.h. exp(A)=U exp(J) [mm] U^{-1}.
[/mm]
(U exp(J) [mm] U^{-1} [/mm] - [mm] e^{\lambda} [/mm] I) u =0
[mm] \iff [/mm] (U (exp(J) - [mm] e^{\lambda} [/mm] I) [mm] U^{-1}) [/mm] u =0
LG,
sissi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:42 So 08.05.2016 | Autor: | hippias |
Ich halte die Aussage in dieser Form für nicht richtig, denn die komplexe $e$-Funktion ist ja nicht injektiv: [mm] $e^{\lambda}= e^{\lambda+2i\pi}$.
[/mm]
Nach entsprechender Reparatur, könnte man so vorgehen: Sei [mm] $\mu$ [/mm] ein Eigenwert von [mm] $e^{A}$. [/mm] Der Eigenraum $U$ zu [mm] $\mu$ [/mm] ist $A$-invariant. Da der Raum komplex ist, gibt es einen Eigenvektor von $A$ in $U$ zu einem gewissen Eigenwert [mm] $\lambda$. [/mm] Folgere [mm] $\mu= e^{\lambda}$.
[/mm]
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:17 So 08.05.2016 | Autor: | sissile |
Buch: S.64 https://books.google.at/books?id=FZ0CAQAAQBAJ&pg=PA64&lpg=PA64&dq=jordan+structure+of+A+and+exp%28A%29+are+the+same&source=bl&ots=YjQ82Jfm4b&sig=24A7q_Qp9P6Mmeu1sB_7T6n9jQ8&hl=de&sa=X&ved=0ahUKEwjQ2frkncvMAhUGWRQKHU3YCR8Q6AEIGzAA#v=onepage&q=jordan%20structure%20of%20A%20and%20exp%28A%29%20are%20the%20same&f=false
Ich verstehe deine Erkärung leider gar nicht. Unter exp(A) wäre der Eigenraum von [mm] \mu: E(\mu) [/mm] invariant, aber warum auch unter A?
[mm] x\in E(\mu) \Rightarrow e^A [/mm] x = [mm] \mu [/mm] x
ZZ.: A*x [mm] \in E(\mu) [/mm] d.h. [mm] e^A [/mm] *A x = [mm] \mu [/mm] A x
A* [mm] e^A [/mm] x= A [mm] \mu [/mm] x= [mm] \mu [/mm] A*x
Aber warum sollte ich A und [mm] e^A [/mm] vertauschen können?
LG,
sissi
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:09 Mo 09.05.2016 | Autor: | hippias |
> Buch: S.64
> https://books.google.at/books?id=FZ0CAQAAQBAJ&pg=PA64&lpg=PA64&dq=jordan+structure+of+A+and+exp%28A%29+are+the+same&source=bl&ots=YjQ82Jfm4b&sig=24A7q_Qp9P6Mmeu1sB_7T6n9jQ8&hl=de&sa=X&ved=0ahUKEwjQ2frkncvMAhUGWRQKHU3YCR8Q6AEIGzAA#v=onepage&q=jordan%20structure%20of%20A%20and%20exp%28A%29%20are%20the%20same&f=false
>
> Ich verstehe deine Erkärung leider gar nicht. Unter exp(A)
> wäre der Eigenraum von [mm]\mu: E(\mu)[/mm] invariant, aber warum
> auch unter A?
> [mm]x\in E(\mu) \Rightarrow e^A[/mm] x = [mm]\mu[/mm] x
> ZZ.: A*x [mm]\in E(\mu)[/mm] d.h. [mm]e^A[/mm] *A x = [mm]\mu[/mm] A x
> A* [mm]e^A[/mm] x= A [mm]\mu[/mm] x= [mm]\mu[/mm] A*x
> Aber warum sollte ich A und [mm]e^A[/mm] vertauschen können?
Das wirst Du einsehen, wenn Du [mm] $e^{A}$ [/mm] ausschreibst...
>
> LG,
> sissi
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:35 Mo 09.05.2016 | Autor: | sissile |
Klar, da ist mir das einfachste nicht eingefallen.
Aber ich verstehe die nächsten Schritte nicht.
> Da der Raum komplex ist, gibt es einen Eigenvektor von $ A $ in $ U $ zu einem gewissen Eigenwert $ [mm] \lambda [/mm] $. Folgere $ [mm] \mu= e^{\lambda} [/mm] $.
??
Ich habe es in verschiedenen Richtungen versucht zu verstehen, indem ich eingesetzt habe, hin und her verschoben habe..
Ein Ansatz ohne Erfolg war z.B.: Sei [mm] \mu= e^{\lambda} [/mm] so [mm] 0=p_{e^A} (e^\lambda)=det(e^A [/mm] - I [mm] e^{\lambda})= det(e^\lambda (e^{A-\lambda I} [/mm] - I)) [mm] \Rightarrow det(e^{A- \lambda I} [/mm] - I)=0.
Oder ich hab versucht einzusetzen indem ich verwende dass der Eigenraum zu [mm] \mu [/mm] unter A invariant ist: A u = [mm] \mu^{-1} [/mm] A [mm] e^A [/mm] u
Oder ich habe angenommen, dass es solch ein [mm] \lambda [/mm] mit Au= [mm] \lambda [/mm] u mit u [mm] \in E(\mu) [/mm] gibt(weshalb sollte A [mm] \in M_{n\times n} (\mathbb{C}) [/mm] das rechtfertigen??)....usw. ohne Erfolg.
Kannst du mir das vlt. nochmals erklären?
LG,
sissi
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:00 Mo 09.05.2016 | Autor: | hippias |
Sei [mm] $\mu$ [/mm] EW von [mm] $e^{A}$. [/mm] Dann ist $U:= [mm] ker(e^{A}-\mu)>0$ [/mm] und $A$-invariant. Da der $K= [mm] \IC$ [/mm] und $U$ endlich dimensional sind, besitzt [mm] $A_{|_{U}}$ [/mm] einen Eigenvektor [mm] $u\in [/mm] U$. Es gelte $Au= [mm] \lambda [/mm] u$.
Untersuche nun [mm] $e^{A} [/mm] u$. Einen ähnlichen Schluss hast Du vermutlich übrigens im ersten Teil benutzt.
|
|
|
|