www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - exp wesentliche Singularität
exp wesentliche Singularität < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

exp wesentliche Singularität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:52 Fr 05.10.2018
Autor: Maxi1995

Hallo,
angenommen ich betrachte [mm] $\exp(-\frac{1}{z^2})$, [/mm] dann weiß ich, dass die Funktion im komplexen Nullpunkt eine wesentliche Singularität hat.
Sie ist dort in eine Laurentreihe entwickelbar, die auf ganz [mm] $\mathbb{C}$ [/mm] normal konvergent ist.
Jetzt ist es doch so, dass die Laurentreihen auch unendlich oft komplex differenzierbar sind, was dann erklären würde, warum die Funktion im Reellen unendlich of differenzierbar ist, oder?

        
Bezug
exp wesentliche Singularität: Antwort
Status: (Antwort) fertig Status 
Datum: 08:18 Fr 05.10.2018
Autor: fred97


> Hallo,
>  angenommen ich betrachte [mm]\exp(-\frac{1}{z^2})[/mm], dann weiß
> ich, dass die Funktion im komplexen Nullpunkt eine
> wesentliche Singularität hat.
> Sie ist dort in eine Laurentreihe entwickelbar, die auf
> ganz [mm]\mathbb{C}[/mm] normal konvergent ist.

Nicht auf ganz [mm] \IC, [/mm] sondern auf $ [mm] \IC \setminus \{0\} [/mm] $ ist die Laurentreihe lokal gleichmäßig konvergent.

> Jetzt ist es doch so, dass die Laurentreihen auch unendlich
> oft komplex differenzierbar sind, was dann erklären
> würde, warum die Funktion im Reellen unendlich of
> differenzierbar ist, oder?

Die Funktion $f(x)=  [mm] \exp(-\frac{1}{x^2}) [/mm] $ ist auf  $ [mm] \IR \setminus \{0\} [/mm] $ beliebig oft (reell) differenzierbar. Das sieht man mit der Kettenregel und vollständiger Induktion recht einfach.

Du kannst auch folgende Funktion betrachten:

[mm] $g(x)=\begin{cases} \exp(-\frac{1}{x^2}) , & \mbox{für }x \ne 0 \\ 0, & \mbox{für }x=0 \end{cases}$. [/mm]

In jedem Analysis- Buch findest Du: $g [mm] \in C^{\infty}(\IR)$ [/mm] und [mm] $g^{(n)}(0)=0$ [/mm] für alle $n [mm] \in \IN_0$. [/mm]




Bezug
                
Bezug
exp wesentliche Singularität: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:24 Sa 06.10.2018
Autor: Maxi1995

Hallo,
danke für deine Antwort. Würde meine Argumentation über die Laurentreihe auch gehen? Bzw. wenn nicht, wieso nicht. Und vielen Dank für die Alternative.

Bezug
                        
Bezug
exp wesentliche Singularität: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Do 11.10.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 58m 2. Gonozal_IX
ULinAMat/Beweis von Kern
Status vor 14h 42m 2. luis52
SStatHypo/approximierter Hypothesentest
Status vor 15h 17m 5. meister_quitte
UAnaR1FunkStetig/Epsilon-Delta Kriterium
Status vor 15h 50m 1. mimo1
UWTheo/stationär/ergodisch
Status vor 19h 16m 2. leduart
Mengenlehre/Skizzieren von Mengen
^ Seitenanfang ^
www.vorhilfe.de