www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - extremwertaufgaben
extremwertaufgaben < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

extremwertaufgaben: übungsaufgabe
Status: (Frage) beantwortet Status 
Datum: 23:42 Fr 22.02.2008
Autor: ange-yeah

Aufgabe
die katheten eines rechtwinkligen dreiecks sind 12cm und 8 cm lang, diesem dreieck ist ein möglichst großes rechteck einzubeschreiben,, von dem zwei seitzen auf den katheten des dreicks liegen.

wie berechne ich das , ich habe echt wenig ahnung im moment von mathe da ich im ausland war, deswegen auch noch die wediteren aufgaben von mir ;-) ich bräuchte jemanden der mir den lösungsvorgang so erklärt, dass ich es dadurch endlich verstehn kann, mein mathelehrer erklärt es mir nämlich nicht.
meine ansätze: EB: A (a,b) = a*b
ich glaube man muss das mit der geradengleichung weiterrechenen: mx+b stimmen die wenigen ansätze wenigstens?? vielen dank für eure hilfe

die ahnungslose


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
extremwertaufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 23:58 Fr 22.02.2008
Autor: leduart

Hallo
Dazu gehört erst mal ne Zeichnung und das Rechteck in das Dreieck eingezeichnet.
dann suchst du einen Zusammenhang zwischen den Seiten a und b, hier brauchst du keine Geradengleichung, sondern nur den Strahlensatz. Dann ersetzt du in A=a*b z. Bsp durch den Ausdruck mit a und hast nur nocha)
Du kannst das Dreieck natürlich auch in ein Koordinatensystem zeichnen, am besten eine kathete (12 cm) auf die x-Achse, die Hypothenuse auf ner Geraden durch 0, die 2.te Kathete parallel zur y. Achse. dann hast du die Hyp als y=m*x und da liegt ein Punkt deines Rechtecks drauf,  bei x1, die eine Länge ist dann Kathete -x1, z.Bsp 12-x1  die andere m*x1. A=m*x1*(12-x1)
kannst du das Max. dieser Parabel finden?
Gruss leduart

Bezug
        
Bezug
extremwertaufgaben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:37 Sa 23.02.2008
Autor: ange-yeah

alos auch hier mein ähnliches ergebnis!

EB: A(a,b)=a*b=max!

NB: f(x)=mx+b
f(0)=8=b
f(12)=0
m=-8/12=-0,67
f(x)=-0,67x+8
b=-o,67a+8

ZF: A(a)= a*(-0,67a+8)
[mm] =0,67a^2+8a [/mm]

Extremum bestimmen:notw Bed:A´(a)=-1,34a+8
-1,34a=-8
a=5,97

einsetzen in NB: b=-0,67a-5,97+80=4

Maximum bestimmen:A(5,97)=23,88   H(5,97/23,88)

Bezug
                
Bezug
extremwertaufgaben: Korrektur
Status: (Antwort) fertig Status 
Datum: 18:14 So 24.02.2008
Autor: Lady_Eisenherz

Hallo!

Jep, das Ergebnis ist richtig.

Gruß,
Lady Eisenherz


Bezug
                        
Bezug
extremwertaufgaben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:48 So 24.02.2008
Autor: ange-yeah

auch hier vielen dank, auch an leduart!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de