www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - extremwertprobleme 2
extremwertprobleme 2 < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

extremwertprobleme 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Di 12.10.2004
Autor: anika87

hab auch noch eine zweite aufgabe die ich nicht verstehe is allerdings noch was umfangreicher:

aus einem rechteckigen stück pappe mit den seitenlängen 40 cm und 25 cm soll man einen kasten ohne deckel herstellen indem man an jeder ecke ein quadrat ausschneidet und die entstehenden seitenflächen nach oben biegt.
der kasten soll ein öglichst großes volumen haben.
wie groß muss man die grundfläche A (in cm hoch 2) und die höhe h (in cm) wählen?

danke schonmal für die hilfe!
anika

        
Bezug
extremwertprobleme 2: Antwort
Status: (Antwort) fertig Status 
Datum: 15:07 Di 12.10.2004
Autor: Paulus

Hallo Anika

> aus einem rechteckigen stück pappe mit den seitenlängen 40
> cm und 25 cm soll man einen kasten ohne deckel herstellen
> indem man an jeder ecke ein quadrat ausschneidet und die
> entstehenden seitenflächen nach oben biegt.
>  der kasten soll ein öglichst großes volumen haben.
>  wie groß muss man die grundfläche A (in cm hoch 2) und die
> höhe h (in cm) wählen?
>  

Hast du dir schon eine Skizze der Situation gemacht?

Da ja grundsätzlich gefragt ist, wie gross denn die auszuschneidenden Quadrate sein müssen, würde ich die Seitenlänge dieser Quadrate mit $x$ bezeichnen (das ist dann auch zugleich die Höhe $h$ der Schachtel (so heisst ein Kasten aus Pappe in der Schweiz)).

Jetzt siehst du sicher auf einen Blick, dass dann die Grundfläche der Schachtel ein Rechteck sein muss, dessen Länge den Wert $40-2x$ und dessen Breite den Wert $25-2x$ aufweisen.

Die Grundfläche sollte dann wohl so berechnet werden können:

$A=(40-2x)(25-2x)$

Das Volumen, ich bezeichne es unüblicherweise einmal mit $y$, berechnet sich dann ja so:

$y=x(40-2x)(25-2x)$

Jetzt hast du also eine Funktion $y=f(x)$. Vielleicht weisst du aus dem Unterricht ja, wo der Maximalwert einer Funktion zu finden ist. ($x$, also die Höhe der Schachtel, muss ja so gewählt werden, dass das Volumen maximal wird)

Kommst du mit dieser kleinen Hilfestellung mit den Hausaufgaben jetzt ein Bisschen weiter?

Versuchs doch mal. Solltest du scheitern, dann meldest du dich einfach wieder mit der Angabe der Stelle, wo es nicht mehr weiter gehen will! :-)

Mit lieben Grüssen

Paul

Bezug
                
Bezug
extremwertprobleme 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:15 Mi 13.10.2004
Autor: anika87

hey !
danke für deine schnelle antwort...ja hat mir was geholfen aber geschafft hab ich die aufgabe irgendwie trotzdem nicht :( naja heute in der schule haben wir sie besprochen und ich habs einigermaßen verstanden trotzdem hab ich ziemlich angst vor der nächsten klausur :(
aba trotzdem danke!
anika

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de