www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - f^2=Id Eigenwerte
f^2=Id Eigenwerte < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f^2=Id Eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:10 Sa 09.11.2013
Autor: mbra771

Aufgabe
Sei [mm] $f:\IR^n \to \IR^n$ [/mm] linear mit [mm] $f^2=Id_{\IR^n}$ [/mm]

1. Bestimmen Sie die möglichen Eigenwerte von $f$.
2. Beweisen Sie, dass $f$ diagonalisierbar ist.

Hallo liebes Forum,
Ich habe dabei folgende Idee, bin mir aber nicht sicher, ob ich diese so formulieren kann.

Sei A [mm] \in \IR^n [/mm] die Matrixdarstellung von f.
Dann folgt aus [mm] $f^2=Id_{\IR^n}$ [/mm]

[mm] $A*A=I_n$ [/mm]
[mm] $A^2-I_n=0$ [/mm] bei $0 [mm] \in \IR^n$ [/mm]
[mm] $A^2-A^0=0$ [/mm]

Sei nun x ein Vielfaches vom Minimalpolynom von A, so folgt:

[mm] $x^2-x^0=x^2-1=(x-1)(x+1)$ [/mm]

Somit können die Eigenwerte von A nur 1 und -1 sein und für das Minimalpolynom von A existieren drei Möglichkeiten:

[mm] $\mu A_1=(x-1)$ [/mm]
[mm] $\mu A_2=(x+1)$ [/mm]
[mm] $\mu A_3=(x+1)(x-1)$ [/mm]

Kann ich so beginnen?
Würde mich über einen Kommentar freuen,
Micha


        
Bezug
f^2=Id Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 07:53 So 10.11.2013
Autor: angela.h.b.


> Sei [mm]f:\IR^n \to \IR^n[/mm] linear mit [mm]f^2=Id_{\IR^n}[/mm]

>

> 1. Bestimmen Sie die möglichen Eigenwerte von [mm]f[/mm].
> 2. Beweisen Sie, dass [mm]f[/mm] diagonalisierbar ist.
> Hallo liebes Forum,
> Ich habe dabei folgende Idee, bin mir aber nicht sicher,
> ob ich diese so formulieren kann.

>

Hallo,

> Sei A [mm]\in \IR^n[/mm] die Matrixdarstellung von f.
> Dann folgt aus [mm]f^2=Id_{\IR^n}[/mm]

>

> [mm]A*A=I_n[/mm]
> [mm]A^2-I_n=0[/mm] bei [mm]0 \in \IR^n[/mm]
> [mm]A^2-A^0=0[/mm]

>

> Sei nun x ein Vielfaches vom Minimalpolynom von A, so folgt:

Also ist das Minimalpolynom von A ein Teiler von
p(x)=

> [mm]x^2-x^0=x^2-1=(x-1)(x+1)[/mm]

>

> Somit können die Eigenwerte von A nur 1 und -1 sein und
> für das Minimalpolynom von A existieren drei
> Möglichkeiten:

>

> [mm]\mu A_1=(x-1)[/mm]
> [mm]\mu A_2=(x+1)[/mm]
> [mm]\mu A_3=(x+1)(x-1)[/mm]

Weil das charakteristische Polynom dieselben Nullstellen wie das Minimalpolynom hat,

> können die Eigenwerte von A

also auch von f

>nur 1 und -1 sein
>

> Kann ich so beginnen?

Ja.

LG Angela
 

Bezug
                
Bezug
f^2=Id Eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:15 Sa 16.11.2013
Autor: mbra771

Hallo Angela,
viele Dank für deine Antwort. Auch wenn die Frage schon einige Tage alt ist, so möchte ich daran weiter arbeiten. Ich suche gerade eine Verbindung, wie ich Punkt 2 beweisen kann.
Dabei könnte man eine der folgenden Möglichkeiten benutzen:

Eine Matrix ist diaganalisierbar, wenn die Eigenvektoren eine Basis von [mm] \IK^n [/mm] bilden.

oder wenn

die Geometrische Vielfachheit gleich der Algeraischen Vielfachheit gilt für alle Eigenwerte von f bzw A.

... momentan kommt mir Weg zwei leichter vor, aber ich hab noch keine konkrete Idee und würde mich über einen Tip freuen.
Danke, Micha


Bezug
                        
Bezug
f^2=Id Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 10:00 Mo 18.11.2013
Autor: fred97


> Hallo Angela,
>  viele Dank für deine Antwort. Auch wenn die Frage schon
> einige Tage alt ist, so möchte ich daran weiter arbeiten.
> Ich suche gerade eine Verbindung, wie ich Punkt 2 beweisen
> kann.
>  Dabei könnte man eine der folgenden Möglichkeiten
> benutzen:
>  
> Eine Matrix ist diaganalisierbar, wenn die Eigenvektoren
> eine Basis von [mm]\IK^n[/mm] bilden.
>  
> oder wenn
>
> die Geometrische Vielfachheit gleich der Algeraischen
> Vielfachheit gilt für alle Eigenwerte von f bzw A.
>  
> ... momentan kommt mir Weg zwei leichter vor, aber ich hab
> noch keine konkrete Idee und würde mich über einen Tip
> freuen.
>  Danke, Micha
>  


Für das Minimalpolynom [mm] \mu [/mm] von f gibt es 3 Möglichkeiten:


$ [mm] \mu(x)=(x-1) [/mm] $
$ [mm] \mu(x)=(x+1) [/mm] $
$ [mm] \mu(x)=(x+1)(x-1) [/mm] $

Nun ist [mm] \mu(f)=0 [/mm]

Im ersten Fall ist dann f= id

Im Zweiten Fall ist f=-id

Und im 3. Fall ist (f+id)(f-id)=0, also

  $ [mm] \IR^n [/mm] =kern(f+id) [mm] \oplus [/mm] kern (f-id)$

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de