www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - f(1/n) hol. in Umgebung von 0?
f(1/n) hol. in Umgebung von 0? < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f(1/n) hol. in Umgebung von 0?: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 00:28 Di 21.06.2011
Autor: Rubstudent88

Aufgabe 1
1) In welchen Fällen existiert eine in einer offenen Umgebung von 0 definierte holomorphe Funktion f, so dass für ein [mm] n_{0} \in \IN [/mm] gilt:
(i) [mm] f(\bruch{1}{n})=\begin{cases} 0, & n=2k+1 \in \IN \\ 1, & n=2k \in \IN \end{cases} [/mm] für n [mm] \ge n_{0} [/mm]
(ii) [mm] f(\bruch{1}{n})=\begin{cases} 0, & n=2k+1 \in \IN \\ \bruch{1}{n}, & n=2k \in \IN \end{cases} [/mm] für n [mm] \ge n_{0} [/mm]
(iii) [mm] f(\bruch{1}{n})=\begin{cases} \bruch{1}{n+1}, & n=2k+1 \in \IN \\ \bruch{1}{n}, & n=2k \in \IN \end{cases} [/mm] für n [mm] \ge n_{0} [/mm]
(iv) [mm] f(\bruch{1}{n})=\bruch{n}{n+1} [/mm] für n [mm] \ge n_{0} [/mm]
Wenn f existiert, dann geben Sie f an. Sonst begründen Sie, warum dieses f nicht existiert.


Aufgabe 2
2)  Es sei nun f: [mm] \IC \to \IC [/mm] eine holomorphe Funktion, für die [mm] f(\bruch{1}{n})=(\bruch{1}{n^{2}}+\bruch{1}{n}-2)*e^{-\bruch{1}{n}} [/mm] für alle n [mm] \in \IN. [/mm] Bestimmen Sie alle Nullstellen von f.


Guten Abend zusammen,

ich bräuchte bei obiger Aufgabe eure Hilfe, da ich nicht genau weiß, wie ich vorgehen muss. Es wäre daher sehr nett, wenn ihr mir unter die Arme greifen könntet.

Also bei 1 habe ich mir folgende Dinge überlegt:

(i) Hier habe ich mit 0 und 1 praktisch zwei Häufungspunkte, einmal ist f(z)=0*z und einem f(z)=n*z, nur kann man f in einer offenen Umgebung liegen wenn ich zwei Häufungspunkte habe? Meine Umgebung wäre ja dann doch eher abgeschlossen als offen oder? Existiert dann mein f deswegen nicht?

(ii) Hier hätte ich einmal f(z)=0*z und f(z)=z. Hier würde ich sagen, dass mein f existiert, da 0 in meiner Umgebung enthalten ist und mit ich mit [mm] \bruch{1}{n} [/mm] eine offene Kreisscheibe erzeugen kann; ist das soweit richtig?

(iii) Hier hätte ich einmal [mm] f(z)=\bruch{1}{z^{-1}+1} [/mm] und f(z)=z. Hier würde ich sagen, dass mein f nicht in der Umgebung existiert, da die 0 für [mm] f(\bruch{1}{n}) [/mm] nicht exisitiert?

(iv) Hier ist [mm] f(z)=\bruch{n}{z^{-1}+1}. [/mm] Hier würde ich sagen, dass mein f in der Umgebung existiert, da ich eine offene Kreisscheibe erzeugen kann und die 0 enthalten ist?

Sind meine Argumente richtig und plausibel, wären meine fs richtig?

Zu 2)
Also [mm] e^{-\bruch{1}{n}} [/mm] wird nicht 0, also betrachte nur noch [mm] \bruch{1}{n^{2}}+\bruch{1}{n}-2=0; [/mm] kommt heraus: n=1

in f(z) umgewandelt: [mm] z^{2}+z-2=0 [/mm] --> z=1 oder z=-2, welche Nullstellen soll ich da nehmen? Diese oder die von [mm] \bruch{1}{n^{2}}+\bruch{1}{n}-2? [/mm]

        
Bezug
f(1/n) hol. in Umgebung von 0?: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Di 21.06.2011
Autor: fred97


> 1) In welchen Fällen existiert eine in einer offenen
> Umgebung von 0 definierte holomorphe Funktion f, so dass
> für ein [mm]n_{0} \in \IN[/mm] gilt:
>  (i) [mm]f(\bruch{1}{n})=\begin{cases} 0, & n=2k+1 \in \IN \\ 1, & n=2k \in \IN \end{cases}[/mm]
> für n [mm]\ge n_{0}[/mm]
>  (ii) [mm]f(\bruch{1}{n})=\begin{cases} 0, & n=2k+1 \in \IN \\ \bruch{1}{n}, & n=2k \in \IN \end{cases}[/mm]
> für n [mm]\ge n_{0}[/mm]
>  (iii) [mm]f(\bruch{1}{n})=\begin{cases} \bruch{1}{n+1}, & n=2k+1 \in \IN \\ \bruch{1}{n}, & n=2k \in \IN \end{cases}[/mm]
> für n [mm]\ge n_{0}[/mm]
>  (iv) [mm]f(\bruch{1}{n})=\bruch{n}{n+1}[/mm] für
> n [mm]\ge n_{0}[/mm]
>  Wenn f existiert, dann geben Sie f an. Sonst
> begründen Sie, warum dieses f nicht existiert.
>  
> 2)  Es sei nun f: [mm]\IC \to \IC[/mm] eine holomorphe Funktion,
> für die
> [mm]f(\bruch{1}{n})=(\bruch{1}{n^{2}}+\bruch{1}{n}-2)*e^{-\bruch{1}{n}}[/mm]
> für alle n [mm]\in \IN.[/mm] Bestimmen Sie alle Nullstellen von f.
>  
> Guten Abend zusammen,
>  
> ich bräuchte bei obiger Aufgabe eure Hilfe, da ich nicht
> genau weiß, wie ich vorgehen muss. Es wäre daher sehr
> nett, wenn ihr mir unter die Arme greifen könntet.
>  
> Also bei 1 habe ich mir folgende Dinge überlegt:
>  
> (i) Hier habe ich mit 0 und 1 praktisch zwei
> Häufungspunkte, einmal ist f(z)=0*z und einem f(z)=n*z,
> nur kann man f in einer offenen Umgebung liegen wenn ich
> zwei Häufungspunkte habe? Meine Umgebung wäre ja dann
> doch eher abgeschlossen als offen oder? Existiert dann mein
> f deswegen nicht?
>  
> (ii) Hier hätte ich einmal f(z)=0*z und f(z)=z. Hier
> würde ich sagen, dass mein f existiert, da 0 in meiner
> Umgebung enthalten ist und mit ich mit [mm]\bruch{1}{n}[/mm] eine
> offene Kreisscheibe erzeugen kann; ist das soweit richtig?
>  
> (iii) Hier hätte ich einmal [mm]f(z)=\bruch{1}{z^{-1}+1}[/mm] und
> f(z)=z. Hier würde ich sagen, dass mein f nicht in der
> Umgebung existiert, da die 0 für [mm]f(\bruch{1}{n})[/mm] nicht
> exisitiert?
>  
> (iv) Hier ist [mm]f(z)=\bruch{n}{z^{-1}+1}.[/mm] Hier würde ich
> sagen, dass mein f in der Umgebung existiert, da ich eine
> offene Kreisscheibe erzeugen kann und die 0 enthalten ist?
>  
> Sind meine Argumente richtig und plausibel, wären meine fs
> richtig?

Nein, nein, nein ! Da oben steht nur Unfug, den man gar nicht kommentieren kann und mag.

Zu i) Annahme: es gibt ein holomorphes f mit ...

f ist in z=0 stetig, also: f(1/n) [mm] \to [/mm] f(0) für n [mm] \to \infty. [/mm] Dann gilt auch:

         1=    f(1/(2k)) [mm] \to [/mm] f(0)  und 0 =f(1/(2k+1)) [mm] \to [/mm] f(0)

Es folgt : f(0)=0 und f(0)=1, Widerspruch.

Zu ii) Annahme: es gibt ein holomorphes f mit ...

Dann ist  0 =f(1/(2k+1))  für jedes k. Der Identitätssatz liefert: f ist konstant = 0.

Aber: 1/(2k)= f(1/(2k)), Widerspruch.

Zu iii) Annahme: es gibt ein holomorphes f mit ...

Setze g(z)=f(z)-z. Dann ist g(1/(2k))=0. Der Identitätssatz liefert: g ist konstant = 0. Somit: f(z)=z

Aber: 1/(2k+2)= f(1/(2k+1))=1/(2k+1) Widersruch.

Zu iv)  [mm] f(z):=\bruch{1}{1+z} [/mm]

FRED

>  
> Zu 2)
>  Also [mm]e^{-\bruch{1}{n}}[/mm] wird nicht 0, also betrachte nur
> noch [mm]\bruch{1}{n^{2}}+\bruch{1}{n}-2=0;[/mm] kommt heraus: n=1
>
> in f(z) umgewandelt: [mm]z^{2}+z-2=0[/mm] --> z=1 oder z=-2, welche
> Nullstellen soll ich da nehmen? Diese oder die von
> [mm]\bruch{1}{n^{2}}+\bruch{1}{n}-2?[/mm]  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de