www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - f diffbar,dann ex.Konst.ü.Norm
f diffbar,dann ex.Konst.ü.Norm < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f diffbar,dann ex.Konst.ü.Norm: Frage
Status: (Frage) beantwortet Status 
Datum: 13:51 Mi 20.07.2005
Autor: Brinchen

Hallihallo!

Zerbreche mir über folgende Aufgabe den Kopf:

Sei f:  [mm] \IR^{m} \to \IR^{n} [/mm] eine stetig diffbare Abbildung und sei
{x  [mm] \in \IR^{m} [/mm] | f(x)  [mm] \not= [/mm] 0} in einer kompakten Teilmege erhalten. zu zeigen: Es existiert eine Konstante K, so dass  
[mm] \parallel [/mm] f(p)-f(q) [mm] \parallel \le [/mm] K* [mm] \parallel [/mm] p-q [mm] \parallel [/mm] gilt für alle p und q aus [mm] \IR^{m}. [/mm]

Kann man das genauso machen wie beim Beweis, dass es eine solche Konstante gibt, wenn eine lineare Abbildung stetig ist?
Die sieht mir nämlich so verdammt ähnlich aus, dass ich da gar keinen Unterschied sehen kann und daher auch auf keine Lösung komme.

Könnte einer von euch (gerne auch mehrere :-) ) mir wohl dabei helfen?

Dankedankedanke! Ihr seid supisupisupi :-)

Das Brinchen

        
Bezug
f diffbar,dann ex.Konst.ü.Norm: Kommentar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:32 Mi 20.07.2005
Autor: statler

Hallo,
die Frage gehört trotz der topologischen Fachausdrücke mehr zu Analysis (Funktionen mehrerer reeller Veränderlicher). Das müßte funktionieren wie bei einer entsprechenden Fkt. von R nach R, nur jetzt mit Norm statt Betrag.
Ich hoffe, irgendeiner nimmt sich der Sache an.
Gruß

Bezug
        
Bezug
f diffbar,dann ex.Konst.ü.Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Mi 20.07.2005
Autor: Gnometech

Hallo!

Naja, der grosse Unterschied zu linearen Abbildungen ist, dass die Abbildung im Allgemeinen nicht linear ist... ;-)

Aber die Lösung ist nicht schwer. Die Funktion hat kompakten Träger (das bedeutet, dass sie außerhalb einer kompakten Menge konstant o ist) und damit gilt selbiges auch für die Ableitung. Diese ist aber stetig und nimmt daher das Maximum in der Norm an (Matrixnorm in diesem Fall, die Ableitung ist ja an jedem Punkt eine Matrix!). Die Ungleichung folgt dann aus der mehrdimensionalen Variante des Mittelwertsatzes.

Alles klar? Achja, ich verschiebe das mal in die Analysis...

Gruß,

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de