www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - f(x)=0,25x^6 - 2x³
f(x)=0,25x^6 - 2x³ < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f(x)=0,25x^6 - 2x³: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:56 Mi 24.03.2004
Autor: Ute

So lautet meine Funktion, von der ich als Hausaufgabe bis morgen die Nullstellen, Extrema und Wendepunkte herausfinden soll.
Ich weiß leider gar nicht, wie ich anfangen soll, das was ich bis jetzt gemacht hab, sind fünf Ableitungen:

[mm] f'(x)=1,5x^5-6x² [/mm]
[mm] f''(x)=7,5x^4-12x [/mm]
f'''(x)=30x³-12
f''''(x)=90x²
f'''''(x)=180x

Könnt ihr mir helfen? Muss ich vielleicht erstmal das x ausklammern? Wenn ja, aus welcher Funktion oder Ableitung?

        
Bezug
f(x)=0,25x^6 - 2x³: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Mi 24.03.2004
Autor: Eva

Hallo Ute!

Super [ok] Deine Ableitungen sind alle richtig!


1) Nullstellen:

Für eine Nullstelle gilt: $f(x)=0$


2) Extremstellen:

Für die Extremstellen gilt: $f'(x)=0, f''(x) [mm] \neq0$ [/mm]


3) Wendestellen:

Für die Wendestellen gilt: $f''(x)=0, [mm] f'''(x)\neq [/mm] 0$


Nun zur Berechnung:

Zu 1) Wie Du schon richtig vermutet hast, musst Du das x ausklammern. Ich rechne es Dir einmal beispielhaft für die Nullstellen vor, dann kannst Du es analog bei den Extrem- und Wendestellen versuchen!

Für die Nullstellen gilt ja $f(x)=0$ in unserem Fall also:
[mm] $f(x)=0,25x^6-2x^3=0$ [/mm]
Nun klammern wir das x aus, nehmen dazu aber, das größtmögliche! In dieser Aufgabe also [mm] $x^3$, [/mm] ist Dir klar warum?
[mm] $0,25^6-2x^3=0$ [/mm]
Jetzt x vorklammern:
[mm] $x^3*(0,25x^3-2)=0$ [/mm]
Schon haben wir unsere erste Lösung, denn 0 geteilt durch irgendetwas gibt ja immer 0 --> $x1=0$

Im nächsten Schritt setzen wir nun die Klammer 0:
[mm] $0,25x^3-2=0$ [/mm]
Wir bringen die 2 auf die andere Seite:
[mm] $0,25x^3=2$ [/mm]
Teilen nun durch 0,25, um das x³ alleine stehen zu haben:
[mm] $x^3=8$ [/mm]
Und im letzten Schritt ziehen wir die 3. Wurzel aus 8 (was wir aber in diesem Fall im Kopf machen können) und kommen zu dem Ergebnis:
$x2=2$

Um das Ergebnis zu überprüfen, kannst Du nun unsere beiden Ergebnisse in $f(x)$ einsetzen und wenn bei beiden Ergebnissen $0$ als Lösung rauskommt, haben wir es richtig berechnet :-)! Und?
Ist Dir das einigermaßen klar geworden? Falls nicht, frage bitte nach, dann erkläre ich es Dir noch mal ein bisschen ausführlicher!


Zu 2) Für die Extremstellen, kannst Du nun die Berechnung mal selbst versuchen, der Ansatz lautet also: [mm] $1,5x^5-6x^2=0$ [/mm]

Zu 3) Für die Wendestellen, lautet der Ansatz: [mm] $7,5x^4-12x=0$ [/mm]

Versuche mal beide Stellen anhand meines Beispiels mit den Nullstellen zu berechnen.
Bei den Extremstellen müsst ihr doch bestimmt auch bestimmen, ob es sich um einen Hoch- oder um einen Tiefpunkt handelt, nicht wahr? Wie habt ihr das bisher im Unterricht besprochen?

Melde Dich mit Fragen und Deinen Ergebnissen wieder!

Viel Erfolg beim Berechnen,
Grüße
Eva



Bezug
                
Bezug
f(x)=0,25x^6 - 2x³: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:49 Mi 24.03.2004
Autor: Zwille

Hi,
die Ansätze von Eva sind schon richtig.
Bedingung, dass Nullstellen existieren: f(X) = 0 !

Bedingung, dass Extrempunkte existieren: f'(x) = 0 !

Um Wendepunkt ermitteln zu können, muss man die 2. Ableitung bilden !!

Schau doch sonst einmal auf www.mathe.timmermann.org, dort sind auch noch Beispiele angegeben

Gruß
Andy

Bezug
                
Bezug
f(x)=0,25x^6 - 2x³: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Mi 24.03.2004
Autor: Ute

Ok, ich bin nun klar gekommen.
Eine Frage noch: Ich habe einen Extrema 1,59/-3,9 und 0/0. Der Erste ist ein Tiefpunkt und der Zweite? Normalerweise muss es ja größer oder kleiner als 0 sein, um herauszukriegen, ob es ein HP oder TP ist

Bezug
                        
Bezug
f(x)=0,25x^6 - 2x³: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 Mi 24.03.2004
Autor: Marc

Hallo Ute,

> Ok, ich bin nun klar gekommen.
>  Eine Frage noch: Ich habe einen Extrema 1,59/-3,9 und 0/0.
> Der Erste ist ein Tiefpunkt und der Zweite? Normalerweise
> muss es ja größer oder kleiner als 0 sein, um
> herauszukriegen, ob es ein HP oder TP ist

Ich nehme an, du meinst mit "es" den Funktionswert der zweiten Ableitung an den Stellen 1,59 und 0.

Weiterhin vermute ich, dass du für diesen Wert Null errechnet hast und jetzt nicht weißt, ob es ein Hoch- oder Tiefpunkt ist.

Du hast also wahrscheinlich $f'(0)=0$ und $f''(0)=0$ errechnet, stimmt's?

Dann stelle ich mal eine Gegenfrage: Ist denn vielleicht die Stelle $0$ eine Wendestelle? Falls ja, dann kann bei [mm] $x_0=0$ [/mm] ja nicht auch noch ein Extrempunkt sein...

Und, was sagst du jetzt?

Viel Erfolg,
Marc

Bezug
                                
Bezug
f(x)=0,25x^6 - 2x³: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 Mi 24.03.2004
Autor: Ute

Da ist Nullstelle, Extremum und Wendepunkt in einem. Nennt man das nicht Sattelpunkt?

Bezug
                                        
Bezug
f(x)=0,25x^6 - 2x³: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Mi 24.03.2004
Autor: Marc

Hallo Ute,

> Da ist Nullstelle, Extremum und Wendepunkt in einem. Nennt
> man das nicht Sattelpunkt?

wie gesagt, eine Stelle kann nicht gleichzeitig Extrem- und Wendestelle sein. Du meinst folgendes:

Die Stelle $x=0$ ist ein Wendepunkt und die erste Ableitung ist Null ($f'(0)=0$); da dies gleichbedeutend mit einer horizontalen Tangente ist, nennt man einen solchen Wendepunkt auch Sattelpunkt. Ein Extrempunkt liegt nicht an der Stelle $x=0$.

Nun alles klar?

--Marc.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de