f[x]=c*a^x < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:05 So 02.01.2005 | Autor: | klinny |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
hallü!also bin neu hier und hab ein problem *g*
wir sollen über die ferien ein Essay [kurzer Text] über
die Eigenschaften der Funktion
f(x)=c*a[hoch]x
und ihre Bedeutung für Wachstum u Zerfallprozesse schreiben
...eigentlich liegt mir Mathe aber da weiss ich überhaupt nicht was ich schreiben soll und wie ich anfangen soll
naja ich hoffe mir kann jemand helfen und ich bin im richtigen Forum
tsö,klinny
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:48 So 02.01.2005 | Autor: | MacMath |
Überlege zunächst, wie eine Wachstumsfunktion aufgebaut sein muss:
Beispiel:
Kapital: 10000
Jährl. Zinsen: 5%
Frage: Wie groß ist das Kapital nach x Jahren
Nach 1 Jahr: 10000 *105%
Nach 2 Jahren: (10000*105%)*105%
Nach x Jahren: 10000 * [mm] 1,05^x
[/mm]
Allgemein Wachstumsfunktion:
Anfangswert*Wachstum(pro Zeit) hoch Zeit
Überlege nun einmal selbst, was ein Zerfallsprozess ist, die Lösung ist analog
Ich hoffe ich konnte dir helfen
GrUß Daniel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:22 So 02.01.2005 | Autor: | Disap |
"hallü!also bin neu hier und hab ein problem *g*
wir sollen über die ferien ein Essay [kurzer Text] über
die Eigenschaften der Funktion
f(x)=c*a[hoch]x
und ihre Bedeutung für Wachstum u Zerfallprozesse schreiben
...eigentlich liegt mir Mathe aber da weiss ich überhaupt nicht was ich schreiben soll und wie ich anfangen soll
naja ich hoffe mir kann jemand helfen und ich bin im richtigen Forum
tsö,klinny"
(ups, habe aus Versehen die Zitierung weggemacht)
Servus
Die Eigenschaften der Funktion f(x) = [mm] c*a^{x}
[/mm]
Hiermit ist wohl gemeint, was sagen die Faktoren c und a aus? Was passiert, wenn c negativ wird? c größer oder kleiner wird als z.B. 1
Das selbe für a, bis auf, dass [mm] a^{x} [/mm] nur für >0 definiert ist.
Das heisst, die Überlegungen sind, was bewirkt das c, was bewirkt das a?
Was einen schon automatisch auf die Aussage von McMath zurückführt.
"Anfangswert*Wachstum(pro Zeit) hoch Zeit"
Anfangswert ist der Schnittpunkt mit der X-Achse und Wachstum die Steigung.
Später kann man natürlich noch untersuchen, was passiert, wenn man ein negatives x hat:
Also f(x) = [mm] c*a^{-x}
[/mm]
Ganz allgemein sagen wir auf unserer Schule: Ein Vorgang, der durch eine Exponentialfunktion beschrieben werden kann, wird exponentielles Wachstum genannt.
Was heißt, die Bedeutung von Wachstum und Zerfallprozessen... Man kann ganz tolle Sachen damit machen. Wie MacMath das auch schon beschrieben hat. Auf dein Kapital kannst du auf deinem Sparbuch, Fond oder was weiß ich was einige Prozente bekommen. Genau das wird ja wiedergebeben. Wie viel Kapital habe ich nach welchem Zeitraum?
Des weiteren lassen sich genauso gut Zerfallsprozesse von radioaktiven Substanzen beschreiben. (Ich will ja nicht zu viel verraten und dem MacMath ins Handwerkfuschen)
Oder später führt deine Funktionsgleichung auf die Integralrechnung zu. Bei der Aufladung eines Kondensators zum Beispiel lässt sich ebenfalls wunderbar ein Bezug zur Physik herstellen. Wenn man das Wachstum pro Zeit gegeben hat, kann man über die Formel Q = I*t die Ladung ausrechnen (Flächeninhalt einer Funktion) => Integralrechnung ist für den Flächeninhalt einer Funktion gut.
Naja, zurück zum Zinseszins. Mit ihm lässt sich später wunderbar eine Zahl herleiten (die Eulersche Zahl mit dem Wert 2,718 gerundet). Aber das ist gar nicht wichtig für dich. Leitet man die Funktion f(x) = [mm] 1*2^{x} [/mm] ab, so wird man sehen, dass die Ableitung nicht so stark ansteigt wie f(x).
Leitet man die Funktion h(x) = [mm] 1*4^{x} [/mm] ab , so steigt die Ableitung stärker als die Funktion h(x). Das bedeutet, dass es dazwischen eine Zahl geben muss, die beim Ableiten ebenfalls den selben Wert hat und das ist das schöne, an der eulerschen Zahl. Leitet man [mm] e^{x} [/mm] ab, so ist es ebenfalls [mm] e^{x}. [/mm]
In der Schule ist die obengenannte Funktionsgleichung eigentlich nur ein Ansatz, um die eulersche Zahl herzuleiten. Wobei man sich da natürlich fragt, warum rechnet man mit diesem e. Aber ich glaube, das interessiert hier keinen.
mit freundlichen Grüßen Disap
|
|
|
|