www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - fast sichere Konvergenz ZV
fast sichere Konvergenz ZV < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

fast sichere Konvergenz ZV: Idee
Status: (Frage) beantwortet Status 
Datum: 13:01 Mo 18.01.2010
Autor: kleine_ente_nora

Aufgabe
Es seien [mm] X_{n}, [/mm] X, [mm] Y_{n}, [/mm] Y : Omega [mm] \to \IR [/mm] Zufallsvariablen. Man beweise:
Es gelte [mm] X_{n} \to [/mm] X fast sicher sowie [mm] Y_{n} \to [/mm] Y fast sicher. Weiter seien die [mm] Y_{n} [/mm] und Y bei keinem w gleich Null. Dann gilt auch [mm] X_{n}/Y_{n} \to [/mm] X/Y fast sicher.

Hallo ihr.
Ich brauche mal eine Idee zum Lösen dieser Aufgaben. Wir haben fast sichere Konvergenz wie folgt definiert. [mm] X_{n} \to [/mm] X fast sicher [mm] \gdw [/mm] P({w | [mm] X_{n}(w) \to [/mm] X(w)})=1. Außerdem haben wir bereits gezeigt, dass die fast sichere Konvergenz auch für die Addition und die Multiplikation gilt. Aber wie mache ich das hier? Division ist ja auch bei punktweiser Konvergenz in der Analysis nicht definiert, oder? Hat jemand einen Tipp? Dank euch schon mal im Voraus. Nora

        
Bezug
fast sichere Konvergenz ZV: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Mo 18.01.2010
Autor: vivo

Hallo,

für stetige Funktionen [mm] \varphi [/mm] gilt:

[mm] \varphi (Y_n) \to \varphi [/mm] (Y), falls [mm] Y_n \to [/mm] Y

jeweils fast sicher.

gruß

Bezug
                
Bezug
fast sichere Konvergenz ZV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 Mo 18.01.2010
Autor: kleine_ente_nora

Hallo.
Also erstmal vielen Dank für die schnelle Lösung. Das heißt also, dass phi bei mir [mm] X_{n}/x [/mm] wäre? Oder wie soll ich das phi verstehen? Das war irgendwie ein bisschen schnell. Also vielleicht noch mal für mich? Bitte.
Dank dir. Nora

Bezug
                        
Bezug
fast sichere Konvergenz ZV: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Mo 18.01.2010
Autor: vivo

Hallo,

es gilt ja [mm] X_n \to [/mm] X und [mm] Y_n \to [/mm] Y, da [mm] Y_n [/mm] und Y nie null ist, ist
[mm] \varphi (Y_n) [/mm] = [mm] \bruch{1}{Y_n} [/mm] eine stetige funktion und
[mm] \varphi (Y_n) \to \varphi [/mm] (Y)

bennen wir [mm] \varphi (Y_n) [/mm] := [mm] Z_n [/mm] und [mm] \varphi [/mm] (Y) := Z

dann haben wir insgesamt [mm] X_n \to [/mm] X und [mm] Z_n \to [/mm] Z da du geschrieben hast ihr habt es für Produkte schon gezeigt benutzen wir dass einfach und wissen somit:

[mm] X_nZ_n \to [/mm] XZ

und [mm] X_nZ_n [/mm] = [mm] X_n\bruch{1}{Y_n} [/mm]
       XZ = [mm] X\bruch{1}{Y} [/mm]

gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de