www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - folge, monotonie
folge, monotonie < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

folge, monotonie: denkanstoß wird benötigt
Status: (Frage) beantwortet Status 
Datum: 09:33 Do 29.11.2007
Autor: gossyk

Aufgabe
a) [mm] \bruch{1+2+...+n}{n+2} [/mm] - [mm] \bruch{n}{2} [/mm]

b) [mm] \bruch{(2-1/\wurzel{n})^{10} - (1-1/n^2)^{10}}{1-1/n^2-1/\wurzel{n}} [/mm]

diese folgen soll ich auf konvergenz überprüfen. habe die vermutung dass sie monoton fallend ist (a), also wollte ich die monotonie nachweisen mit

[mm] \bruch{1+2+...+n}{n+2} [/mm] - [mm] \bruch{n}{2} [/mm] > [mm] \bruch{1+2+...+n+1}{n+3} [/mm] - [mm] \bruch{n+1}{2} [/mm]

ich wäre dankbar wenn mir hier jemand einen rechentip geben kann.. ich komme nicht weiter als die brüche zu entfernen...

bei b) sieht es leider ähnlich aus, mir scheint für beide braucht man einen gewissen trick um die sache gut aufzulösen, auf den ich leider nicht komme :<

        
Bezug
folge, monotonie: Antwort
Status: (Antwort) fertig Status 
Datum: 10:06 Do 29.11.2007
Autor: angela.h.b.


> a) [mm]\bruch{1+2+...+n}{n+2}[/mm] - [mm]\bruch{n}{2}[/mm]
>  
> b) [mm]\bruch{(2-1/\wurzel{n})^{10} - (1-1/n^2)^{10}}{1-1/n^2-1/\wurzel{n}}[/mm]
>  
> diese folgen soll ich auf konvergenz überprüfen. habe die
> vermutung dass sie monoton fallend ist (a), also wollte ich
> die monotonie nachweisen mit
>  
> [mm]\bruch{1+2+...+n}{n+2}[/mm] - [mm]\bruch{n}{2}[/mm] >
> [mm]\bruch{1+2+...+n+1}{n+3}[/mm] - [mm]\bruch{n+1}{2}[/mm]
>  
> ich wäre dankbar wenn mir hier jemand einen rechentip geben
> kann.. ich komme nicht weiter als die brüche zu
> entfernen...

Hallo,

bei a) könnte es hilfreich sein, die Idee des kl. Gauß zu reproduzieren: es ist ja [mm] \summe_{i=1}^{n}i=\bruch{n(n+1)}{2}. [/mm]

Schau mal, ob Du damit weiterkommst.

b) Hier sehe ich das Problem nicht: warum läßt Du nicht einfach [mm] n\to [/mm] infty gehen und guckst, was mit den Termen, die n enthalten, passiert?

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de