www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - formel für Konvertierung
formel für Konvertierung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

formel für Konvertierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 So 31.10.2004
Autor: RickdaNooki

Hi!
Ich habe eine Ziffernfolge N=z _{n} [mm] z_{n-1} [/mm] ... [mm] z_{1} z_{0} [/mm]   einer natürlichen dualzahl.Zur direkten Umwandlung dieser Dualzahl in eine natürlich Zahl zur basis 4 bzw. 8 kann man folgende Formeln verwenden
[mm] 4^{i} [/mm] ( [mm] z_{2i} [/mm] + [mm] 2z_{2i+1} [/mm] ) = [mm] 4^{i}c_{i} [/mm] bzw. [mm] 8^{i} [/mm] ( [mm] z_{3i} [/mm] + [mm] 2z_{3i +1} [/mm] + [mm] 4z_{3i+2} [/mm] ) = [mm] 8^{i}d_{i} [/mm] (also Ziffern zur Basis 4 bzw 8)
Ich soll beide Formeln benutzen um die duale Zahl 0100101110011 ion eine Zahl zur Basis 4 bzw. 8 zu konvertieren.

Mein Problem sind die Formeln.
Ich weiss nich was ich für i und z einsetzen soll.
Ich weiß was rauskommen soll aber das hilft ja nicht weiter weil ich die formeln benutzen soll.
Kann mir einer helfen wie ich mit den Formeln umzugehen habe?

        
Bezug
formel für Konvertierung: Einige Erklärungen
Status: (Antwort) fertig Status 
Datum: 13:09 Mo 01.11.2004
Autor: Paulus

Hallo Rick

> Hi!
>  Ich habe eine Ziffernfolge N=z _{n} [mm]z_{n-1}[/mm] ... [mm]z_{1} z_{0}[/mm]
>   einer natürlichen dualzahl.Zur direkten Umwandlung dieser
> Dualzahl in eine natürlich Zahl zur basis 4 bzw. 8 kann man
> folgende Formeln verwenden
>  [mm]4^{i}[/mm] ( [mm]z_{2i}[/mm] + [mm]2z_{2i+1}[/mm] ) = [mm]4^{i}c_{i}[/mm] bzw. [mm]8^{i}[/mm] (
> [mm]z_{3i}[/mm] + [mm]2z_{3i +1}[/mm] + [mm]4z_{3i+2}[/mm] ) = [mm]8^{i}d_{i}[/mm] (also
> Ziffern zur Basis 4 bzw 8)
>  Ich soll beide Formeln benutzen um die duale Zahl
> 0100101110011 ion eine Zahl zur Basis 4 bzw. 8 zu
> konvertieren.
>  
> Mein Problem sind die Formeln.
>  Ich weiss nich was ich für i und z einsetzen soll.
>  Ich weiß was rauskommen soll aber das hilft ja nicht
> weiter weil ich die formeln benutzen soll.
>  Kann mir einer helfen wie ich mit den Formeln umzugehen
> habe?
>  

Das müssen wir halt einmal ganz langsam analysieren.
Ich beziehe mich dabei immer auf dieses Beispiel: $n=11_$, diese Ziffernfolge

101101110110

Zum einen: du schreibst:
Ich habe eine Ziffernfolge $N=z _{n} [mm] z_{n-1} [/mm] ... [mm] z_{1} z_{0}$ [/mm] einer natürlichen Dualzahl.

Damit sind die Werte der [mm] $z_k$ [/mm] eigentlich vorgegeben: Jedes $z_$ darf entweder $0_$ oder $1_$ sein. Das ist im Dualsystem so!

Was bedeutet denn diese Ziffernfolge? Per Definition bedeutet sie Folgendes:

[mm] $N=\summe_{k=0}^{n}z_{k}*2^{k}$ [/mm]

Oder ausgeschrieben: (ich ändere dabei die Reihenfolge der Summanden gerade auch noch, d.h. ich lasse $k_$ von $n_$ beginnend nach $0_$ laufen:

[mm] $N=z_{n}*2^{n}+z_{n-1}*2^{n-1}+z_{n-2}*2^{n-2}+z_{n-3}*2^{n-3}+...z_{1}*2^{1}+z_{0}*2^{0}$ [/mm]

Für mein oben angegebenes Beispiel:

[mm] $N=1*2^{11}+0*2^{10}+1*2^{9}+1*2^{8}+0*2^{7}+1*2^{6}+1*2^{5}+1*2^{4}+0*2^{3}+1*2^{2}+1*2^{1}+0*2^{0}$ [/mm]

Untersuchen wir doch mal die Angaben fürs Oktal-System. (Das Vierersystem solltest du dann selber nachvollziehen können)

Du hast geschrieben:

[mm] $8^{i}(z_{3i} [/mm] + [mm] 2z_{3i +1} [/mm] + [mm] 4z_{3i+2}) [/mm] = [mm] 8^{i}d_{i}$ [/mm]

Hier ist offensichtlich [mm] $d_{i}$ [/mm] eine Abkürzung einerseits für den Ausdruck in Klammern, andererseits aber auch eine Ziffer im Oktalsystem.

Vielleicht kehren wir besser die Reihenfolge in der Klammer um, damit es besser mit der allgemeinen ausgeschriebenen Formel korrespondiert:

[mm] $8^{i}(4z_{3i+2} [/mm] + [mm] 2z_{3i +1} [/mm] + [mm] z_{3i}) [/mm] = [mm] 8^{i}d_{i}$ [/mm]

Schauen wir nochmals die Binärzahl an (mein Beispiel, die Verallgemeinerung sollte dir keine Schwierigkeiten bereiten ;-)):

[mm] $N=1*2^{11}+0*2^{10}+1*2^{9}+1*2^{8}+0*2^{7}+1*2^{6}+1*2^{5}+1*2^{4}+0*2^{3}+1*2^{2}+1*2^{1}+0*2^{0}$ [/mm]

Da darf man Klammern setzen (Assoziativgesetz):

[mm] $N=(1*2^{11}+0*2^{10}+1*2^{9})+(1*2^{8}+0*2^{7}+1*2^{6})+(1*2^{5}+1*2^{4}+0*2^{3})+(1*2^{2}+1*2^{1}+0*2^{0})$ [/mm]

Aus den Klammern kann jeweils ausgeklammert werden (Distributivgesetz):

[mm] $N=2^{9}(1*2^{2}+0*2^{1}+1*2^{0})+2^{6}(1*2^{2}+0*2^{1}+1*2^{0})+2^{3}(1*2^{2}+1*2^{1}+0*2^{0})+2^{0}(1*2^{2}+1*2^{1}+0*2^{0})$ [/mm]

Die Zweierpotenzen können als Achterpotenzen angesehen werden, weil der Exponent jeweils eine Dreierzahl ist:

[mm] $N=8^{3}(1*2^{2}+0*2^{1}+1*2^{0})+8^{2}(1*2^{2}+0*2^{1}+1*2^{0})+8^{1}(1*2^{2}+1*2^{1}+0*2^{0})+8^{0}(1*2^{2}+1*2^{1}+0*2^{0})$ [/mm]

Jetzt vergleichst du das mit der oben angegebenen Formel:

Als Exponenten bei der acht habe ich, von links nach rechts: 3,2,1,0.

Die könnte man allgemein mit einem Indes $i_$ versehen:

[mm] $8^{i}$ [/mm] mit $i [mm] \in \{3,2,1,0\}$ [/mm]

Wenn man jetzt versucht, die Indizes der [mm] $z_{?}$ [/mm] innerhalb der zugehörigen Klammern zu berechnen, so sieht man, dass sich der 1. Summand in einer Klammer als $3i+2_$ berechnet, der mittlere Summand zu $3i+1_$ und der 3. Summand zu $3i_$.

Das ist die oben angegeben Formel, so ist das zu interpretieren. Für $i_$ musst du also 0,1,2,3,4,... einsetzen. Bis ca. 1/3 des $n_$.

Der langen Rede kurzer Sinn:

Wenn du eine Dualzahl hast:

101101110110

und die sollt du als Oktalzahl darstellen, dann bildest du von rechts beginnend Dreiergruppen:

101'101'110'110

Je drei Ziffern fasst du als eine Oktalziffer zusammen:

5566

Das ist nämlich [mm] $8^{3}*5+8^{2}*5+8^{1}*6+8^{0}*6$ [/mm]

Oder auch mit deiner obigen Bezeichnung:

[mm] $b_{3}=5; \, b_{2}=5; \, b_{1}=6; \, b_{0}=6$ [/mm]

Ich hoffe, es sei einigermassen klar geworden. Falls nicht, dann frag einfach nach!

Noch besser, du zeigst uns deine Ergebnisse! ;-)

Mit lieben Grüssen

Paul

P.S. Für das Vierersystem bildest du, auch gemäss der Formel, einfach Zweiergrüppchen, fürs Hexadezimalsystem wohl Vierergruppen. :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de