www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "HochschulPhysik" - freie Weglänge
freie Weglänge < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

freie Weglänge: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:18 So 27.09.2009
Autor: Unk

Aufgabe
Berechne die mittlere freie Weglänge von Silber bei 300K und bei 20K. Nimm an, dass jedes Ag-Atom ein Elektron ans Leitungsband abgibt.
Dicht [mm] \rho_{Ag}=10,5 [/mm] g/mol, molare Masse [mm] M_{Ag}=107,87 [/mm] g/mol, sp. elektr. Widerstände [mm] \varphi_{el 300K}=1,61\Omega [/mm] cm und [mm] \varphi_{el 20K}=0,0038\Omega [/mm] cm.

Hallo,

ich habe ein Ergebnis bereits vorliegen, das angeblich stimmen soll.
Sei [mm] \lambda [/mm] die gesuchte mitll. fr. Weglänge, dann soll rauskommen:
[mm] \lambda(300)=0,25 [/mm] nm
[mm] \lambda(20)=480 [/mm] nm.

Meine Rechnung:
Es gilt: [mm] \sigma=\frac{1}{\varphi}=\frac{ne^2\lambda}{mv} [/mm] mit n=Elektronenanzahl, m=Masse Elektron, v=mittl. Geschwindigkeit und umgeformt:
[mm] \lambda=\frac{mv}{ne^2\varphi} [/mm] und [mm] v=\sqrt{\frac{3k_BT}{m}} [/mm]
Also: [mm] \lambda=\frac{\sqrt{3k_BTm}}{ne^2\varphi}. [/mm]

Die Teilchenzahl berechne ich aus: [mm] n=\frac{N}{V}: [/mm]
[mm] M/\rho=\frac{V}{\frac{N}{N_A}} [/mm] folgt: [mm] n=5,9\cdot 10^{8}m^{-3}. [/mm]

Wenn ich all dies einsetze erhalte ich [mm] \lambda(20)=4,77\cdot 10^{-13}m [/mm] und [mm] \lambda(300)=433nm. [/mm]

Ist meine Rechnung fehlerhaft oder das vorgegebene Ergebnis?


        
Bezug
freie Weglänge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Mo 28.09.2009
Autor: rainerS

Hallo!

> Berechne die mittlere freie Weglänge von Silber bei 300K
> und bei 20K. Nimm an, dass jedes Ag-Atom ein Elektron ans
> Leitungsband abgibt.
>  Dicht [mm]\rho_{Ag}=10,5[/mm] g/mol, molare Masse [mm]M_{Ag}=107,87[/mm]
> g/mol, sp. elektr. Widerstände [mm]\varphi_{el 300K}=1,61\Omega[/mm]
> cm und [mm]\varphi_{el 20K}=0,0038\Omega[/mm] cm.

Erst einmal stimmen diese Werte nicht: [mm] $\varphi_{el 300K}=1,61*10^{-6}\Omega\mathrm{cm}$. [/mm] Den richtigen Wert bei 20K habe ich nicht gefunden.


> ich habe ein Ergebnis bereits vorliegen, das angeblich
> stimmen soll.
>  Sei [mm]\lambda[/mm] die gesuchte mitll. fr. Weglänge, dann soll
> rauskommen:
>  [mm]\lambda(300)=0,25[/mm] nm
>  [mm]\lambda(20)=480[/mm] nm.
>  
> Meine Rechnung:
>  Es gilt: [mm]\sigma=\frac{1}{\varphi}=\frac{ne^2\lambda}{mv}[/mm]
> mit n=Elektronenanzahl, m=Masse Elektron, v=mittl.
> Geschwindigkeit und umgeformt:
>  [mm]\lambda=\frac{mv}{ne^2\varphi}[/mm] und
> [mm]v=\sqrt{\frac{3k_BT}{m}}[/mm]
>  Also: [mm]\lambda=\frac{\sqrt{3k_BTm}}{ne^2\varphi}.[/mm]
>  
> Die Teilchenzahl berechne ich aus: [mm]n=\frac{N}{V}:[/mm]
>  [mm]M/\rho=\frac{V}{\frac{N}{N_A}}[/mm] folgt: [mm]n=5,9\cdot 10^{8}m^{-3}.[/mm]

[mm] n=5,0*10^{28}\mathrm{m}^{-3} [/mm].

>  
> Wenn ich all dies einsetze erhalte ich
> [mm]\lambda(20)=4,77\cdot 10^{-13}m[/mm] und [mm]\lambda(300)=433nm.[/mm]
>  
> Ist meine Rechnung fehlerhaft oder das vorgegebene
> Ergebnis?

Du hast die Boltzmannverteilung für die Elektronen angenommen, um die mittlere Geschwindigkeit der Elektronen zu bestimmen. Das ist falsch. Elektronen sind Fermionen, daher musst du die Fermiverteilung verwenden. Berechne die Fermienergie von Silber und daraus die mittlere Geschwindigkeit.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de