www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - funktionen
funktionen < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

funktionen: nullstellen
Status: (Frage) beantwortet Status 
Datum: 22:32 Fr 14.01.2005
Autor: icke85

hallo an alle ,
ich hätte 2 fragen , könntet ihr mir bitte sagen ob ich richtig liege ?
also:

f(x) = [mm] 3x^{3}-10x^{2}+3x [/mm]

es müssen 3 nullstellen sein wegen [mm] x^{3} [/mm]

durch ausklammern hab ich  x=0  , ist die 1.bei mir !
durch quadratische ergänzung hab ich dann
2 weitere  [mm] x_{1}=3 [/mm] und  [mm] x_{2}=0.3333 [/mm]
macht L= [mm] \{0 , +0.33 ,+ 3\} [/mm]
ist das richtig ?

die 2. frage ist ,
für welchen wert von p hat f die nullstelle [mm] x_{0}=-3 [/mm] , wenn die funktion
f(x) = [mm] 3x^{3}+px^{2}+3x [/mm] ist ?
wie fange ich da an und wie höre ich da auf
ich wäre euch dankbar wenn ihr mir helft !

hoffe icke

        
Bezug
funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 Fr 14.01.2005
Autor: Bastiane

Hallo icke!

> f(x) = [mm]3x^{3}-10x^{2}+3x [/mm]
>  
> es müssen 3 nullstellen sein wegen [mm]x^{3} [/mm]

Es können maximal drei Nullstellen sein. Du könntest nämlich auch die Funktion [mm] f(x)=(x-1)^3 [/mm] haben, da ist auch der höchste Exponent 3, die einzige Nullstelle ist aber x=1. Nur mal so zur Ergänzung, nicht, dass du in einer Klausur verzweifelt nach drei Nullstellen suchst! ;-)
  

> durch ausklammern hab ich  x=0  , ist die 1.bei mir !
>  durch quadratische ergänzung hab ich dann
> 2 weitere  [mm]x_{1}=3[/mm] und  [mm]x_{2}=0.3333 [/mm]
>  macht L= [mm]\{0 , +0.33 ,+ 3\} [/mm]
>  ist das richtig ?

Das mit dem Ausklammer um auf eine Lösung für x=0 zu kommen, kannst du dir eigentlich sparen, das sieht man doch eigentlich direkt. Und ob du das nun noch mit quadratischer Ergänzung oder so machst, ist im Prinzip egal, aber das Ergebnis scheint zu stimmen. Aber warum probierst du es nicht einfach selber aus? Du brauchst ja nur deine Nullstellen in die Funktion einzusetzen und gucken, ob dann 0 rauskommt. :-)

> die 2. frage ist ,
>  für welchen wert von p hat f die nullstelle [mm]x_{0}=-3[/mm] ,
> wenn die funktion
> f(x) = [mm]3x^{3}+px^{2}+3x[/mm] ist ?
>  wie fange ich da an und wie höre ich da auf
> ich wäre euch dankbar wenn ihr mir helft !

Ich würde genauso vorgehen wie gerade, also zum Beispiel quadratisch Ergänzung. Da rechnest du dann erstmal mit p wie mit einer Zahl. Du könntest wahrscheinlich auch dein x ausklammern, und dann weiter versuchen. Aber warte mal, ich probiere es gleich mal aus. :-)

Viele Grüße
Bastiane
[banane]


Bezug
        
Bezug
funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:27 Fr 14.01.2005
Autor: Bastiane

Hallo nochmal!
Also, mein Computer hat erst das x ausgeklammert und dann die pq-Formel benutzt. Ich habe ihm dafür einfach die Funktion eingegeben und ihm gesagt, er soll die Nullstellen berechnen. Dann hat er berechnet:
Nullstellen sind: 0, [mm] \bruch{p}{6}\pm\wurzel{\bruch{p^2}{36}-1} [/mm]
(ich hoffe, ich habe mich nirgendwo vertippt...)
Jedenfalls müsstest du jetzt dieses Ergebnis =-3 setzen, und dann dein p berechnen. (es ist übrigens die Lösung mit dem Minus, wo was gescheites bei rauskommt, und zwar p=-10, wobei [mm] -18\le p\le{-6}\vee x\ve [/mm] 6).

Kommst du jetzt klar? Sonst melde dich nochmal.

Viele Grüße
Bastiane
[cap]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de