www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - funktionenreihe
funktionenreihe < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

funktionenreihe: stetigkeit
Status: (Frage) beantwortet Status 
Datum: 05:18 Do 18.01.2007
Autor: pumpernickel

Aufgabe
meine frage ist nur :

was muss man zeigen ,um die stetigkeit einer funktionenreihe zu beweisen/widerlegen?

        
Bezug
funktionenreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:20 Do 18.01.2007
Autor: angela.h.b.


> meine frage ist nur :
>  was muss man zeigen ,um die stetigkeit einer
> funktionenreihe zu beweisen/widerlegen?

Hallo,

zunächst einmal eine wahrscheinlich unbefriedigende  Antwort: Du mußt das zeigen, was man eben zeigt im Zusammenhang mit Stetigkeit. [mm] \varepsilon-\delta-Kriterium [/mm] zum Beispiel.

Aber ich meine zu wissen, worauf Du hinauswillst, auf die Sache mit der gleichmäßigen Konvergenz, stimmt's?

Also:
Du hast eine Funktionenreihe und eine Grenzfunktion f.
Wenn die Partialsummen jeweils stetig sind, und wenn die Konvergenz gegen f gleichmäßig ist, folgt die Stetigkeit der Grenzfunktion.

Punktweise Konvergenz reicht hier nicht. Was nicht ausschließt, daß die Grenzfunktion in diesem Falle trotzdem steig ist. Bei punktweiser Konvergenz kann sie stetig sein oder nicht stetig.

Gruß v. Angela

Bezug
                
Bezug
funktionenreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:52 Fr 19.01.2007
Autor: pumpernickel

hallo angela,
würde es für die stetigkeit (für absolut konvergente reihe) nicht reichen ,wenn ich die existenz einer  grenzfunktion nachweise?

Bezug
                        
Bezug
funktionenreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Fr 19.01.2007
Autor: angela.h.b.


>  würde es für die stetigkeit (für absolut konvergente
> reihe) nicht reichen ,wenn ich die existenz einer  
> grenzfunktion nachweise?

Wenn Du eine Grenzfunktion hast, von der Du zeigen kannst, daß sie stetig ist,
dann ist sie natürlich stetig. Die bloße EXISTENZ der Grenzfunktion reicht natürlich nicht.

Wenn Du die Stetigkeit der Grenzfunktion nicht direkt zeigen kannst,
kannst Du aus der geichmäßigen Konvergenz stetiger Partialsummen auf ihre Stetigkeit schließen.
Punktweise gegen die Grenzfunktion konvergierende Partialsummen reichen hier nicht aus.

Beispiele dazu solltest du in jedem Analysis-Buch finden, es käme mir müßig vor, hier und jetzt eines aufzuschreiben.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de