www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - ganzrationale funktionen
ganzrationale funktionen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ganzrationale funktionen: aufgabe 3
Status: (Frage) beantwortet Status 
Datum: 19:08 Mi 28.03.2007
Autor: girl

Aufgabe
Eine Parabel P verläuft symmetrisch zur y-Achse durch die punkte A(1/0,5) und B (-2/-5,5).
Bestimmen Sie die Gleichung der Parabel.

hier weiß ich leider gar nicht, wie ich anfangen soll.
habs mit der formel:ax²+bx+c probiert..bin aber nicht weit gekommen!
gruß girl

        
Bezug
ganzrationale funktionen: Du gesuchte Funktion
Status: (Antwort) fertig Status 
Datum: 19:37 Mi 28.03.2007
Autor: barsch

Hi,

ich wills mal versuchen:

In der Schule hieß es immer, man erkenne Achsensymmetrie (Symmetrie zur y-Achse) an der Art der Exponenten. Bei durchweg geraden Exponenten (also 0, 2, 4,...) ist eine Funktion Achsensymmetrisch.

Parabel, lässt [mm] x^{2} [/mm] als x mit dem höchsten Exponenten vermuten.

Du hast zwei Punkte, was desweiteren für die Vorgehensweise spricht. Also,

[mm] ax^{2}+bx^{1}+cx^{0}=ax^{2}+bx+c=f(x) [/mm] ist richtig und Folgerung aus der Information, dass es sich um eine Parabel handelt.

Da du weißt, dass die Funktion Achsensymmetrisch sein soll, also fallen Parameter mit ungeraden Exponenten weg:

Von [mm] f(x)=ax^{2}+ bx^{1} +cx^{0} [/mm] bleibt dann noch [mm] f(x)=ax^{2}+c, [/mm] da [mm] bx^{1} [/mm] ungeraden Exponent besitzt.

Desweiteren hast du zwei Punkte und zwei Parameter/Unbekannte.

Wunderbar :-)

Also...,

A(1/0,5) und B (-2/-5,5)

[mm] f(1)=a*1^{2}+c=0,5 [/mm] und

[mm] f(-2)=a*(-2)^{2}+c=-5,5 [/mm]


Das heißt,  

a+c=0,5 und
4a+c=5,5.

Gauß:  .... [mm] c=-\bruch{7}{6} [/mm] ; [mm] a=\bruch{5}{3} [/mm]


Die gesuchte Funtkion mit den oben genannten Eigenschaften lautet:

[mm] f(x)=\bruch{5}{3}*x^{2}-\bruch{7}{6} [/mm]

MfG

Bezug
                
Bezug
ganzrationale funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Mi 28.03.2007
Autor: girl

okay, alles klar! vielen dank! dann müssen, dann fallen wenn ichs richtig verstanden hab ímmer alle ungeraden exponenten weg. und dann setzt man die Punkte einfach ein!?

gruß girl

Bezug
                        
Bezug
ganzrationale funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Mi 28.03.2007
Autor: Informacao

Ja, wenn du weißt, dass eine Fkt. achsensymmetrisch ist, dann fallen die ungeraden Exponenten deiner allgemeinen Fkt.gleichung raus.
Wenn sie punktsymmetrisch ist, dann fallen die geraden Exponenten raus.
LG Informacao

Bezug
                                
Bezug
ganzrationale funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:17 Mi 28.03.2007
Autor: girl

vielen dank! gruß girl

Bezug
        
Bezug
ganzrationale funktionen: Korrektur
Status: (Antwort) fertig Status 
Datum: 20:06 Mi 28.03.2007
Autor: Konrad_CS

Meiner bescheidenen Meinung nach müsste die Funktion eher [mm] f(x)=-2x^2+2,5 [/mm] heißen.
0,5 = a + c
-5,5 = 4a + c

Daraus ergibt sich für a = -2 und für c = 2,5.

Bezug
                
Bezug
ganzrationale funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:18 Mi 28.03.2007
Autor: girl

okay..soweit hab ichs auch verstanden. aber wie kommst du auf die funktion?? also auf a=-2 und c=2,5

Bezug
                        
Bezug
ganzrationale funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Mi 28.03.2007
Autor: Konrad_CS

Also:

I: 0,5 = a + c  / * (-1)
I: -0,5 = -a - c

I+II)

I:   -0,5 = -a - c
II:  -5,5 = 4a + c

     -6,0 = 3a   / :3
     -2,0 = a

einsetzen in I:

0,5 = -2 + c      / +2
2,5 = c

Und wenn ich jetzt n Fehler gemacht hab, soll mich ein Fuchs beißen. Aber die Probe stimmt ;).

Bezug
                                
Bezug
ganzrationale funktionen: Sorry
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:28 Mi 28.03.2007
Autor: barsch

hi,

sorry, girl. Ich habe bei meinem Gauß-Verfahren den einen Punkt falsch beziffert: Ich habe das - vor 5,5 beim rechnen vergessen.

Konrad_CS hat recht. Sorry, aber ansonsten wars ja richtig :-)

Der Weg ist das Ziel :-)

Sorry nochmal.

MfG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de