www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - gebrochen / asymptote
gebrochen / asymptote < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gebrochen / asymptote: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 So 26.08.2007
Autor: engel

hallo!

unecht gebrochen heißt doch, dass zählerpolynom > nennerpolynom!?

na ja, auf jeden fall frage ich mich, ob

f(x) = (x² - 2x + 1) / (4x)

dieser term nicht unecht gebrochen ist. müsste er doch sein, oder?

kann man sagen, dass ein term unecht gebrochen ist, wenn man noch eine polynomdivision durchühren kann?

f(x) = sin(x) / x

warum ist dieser term unecht gebrochen?

wenn n<m ist, dann ist die asymptote die x-achse.

ist n der zähler und m der nenner?


bitte helft mir, danke!



        
Bezug
gebrochen / asymptote: Antwort
Status: (Antwort) fertig Status 
Datum: 15:07 So 26.08.2007
Autor: vagnerlove

Hallo

> hallo!
>  
> unecht gebrochen heißt doch, dass zählerpolynom >
> nennerpolynom!?
>  

Nicht ganz, eine gebrochen rationale Funktion ist dann unecht gebrochen rational, wenn Grad des Zählerpolynoms [mm] /ge [/mm] Grad des Nennerpolynoms gilt.

> na ja, auf jeden fall frage ich mich, ob
>
> f(x) = (x² - 2x + 1) / (4x)
>  
> dieser term nicht unecht gebrochen ist. müsste er doch
> sein, oder?
>  

Richtig, das ist eine unecht gebrochen rationale Funktion

> kann man sagen, dass ein term unecht gebrochen ist, wenn
> man noch eine polynomdivision durchühren kann?
>  

Würde ich nicht sagen. Das ist eine unschöne Definition.


> f(x) = sin(x) / x
>  
> warum ist dieser term unecht gebrochen?
>  

Das ist eine "Mischfunktion".


> wenn n<m ist, dann ist die asymptote die x-achse.
>  
> ist n der zähler und m der nenner?
>  

Ja, wenn der Grad des Nennerpolynoms größer ist als der Grad des Zählerpolynoms konvergiert f(x) gegen 0 für x-->unendlich.


>
> bitte helft mir, danke!
>  
>  

Gruß
Reinhold

Bezug
                
Bezug
gebrochen / asymptote: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 So 26.08.2007
Autor: engel

hallo!

danke für deine antwort. was meinst du mit "mischfunktion"?

Bezug
                        
Bezug
gebrochen / asymptote: Antwort
Status: (Antwort) fertig Status 
Datum: 15:25 So 26.08.2007
Autor: vagnerlove

Mit "Mischfunktion" meine ich, dass da noch eine trigonometrische Funktion vorkommt.

Gruß
Reinhold

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de