www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - gebrochenrationale Funktion
gebrochenrationale Funktion < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gebrochenrationale Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:38 Mo 16.03.2009
Autor: miumiu

Aufgabe
Wie bestimmt man eine Funktion, wenn man einen Punkt und senkrechte/waagrechte Asymptote vorgegeben hat?

Ich habe verstanden, wie man die Eigenschaft von senkrechten Asymptoten umsetzt.
Bei einem Punkt mit(x0/y0)kann ich es nur, wenn y0= 0 ist.
Gibt es auch Aufgabenstellungen, bei der man Funktionen mit einem Punkt (x0/y0) mit y0 =/= 0 angeben muss? Wie bearbeitet man diese dann?
Könntet ihr mir auch erklären, wie man waagrechte Asymptoten in die Funktion einbaut?

Danke im Voraus!^^


        
Bezug
gebrochenrationale Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Mo 16.03.2009
Autor: leduart

Hallo
Bei einer senkrechten Assymptote, also einer Polstelle kann man doch [mm] y_0 [/mm] nicht vorgeben? senkrechte Ass. heisst doch automatisch y gegen unendlich. Und das heisst im Nenner muss [mm] (x-x_0)^n [/mm] stehen n=1,2,...
kannst du die Frage deutlicher stellen ? oder eine Beispielaufgabe?
Gruss leduart

Bezug
                
Bezug
gebrochenrationale Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 Mo 16.03.2009
Autor: miumiu

Hallo leduart!

Wenn ich beispielsweise x=4 als senkrechte Asymptote und einen Punkt (3/0) als Angabe habe, ist eine mögliche Funktion (x-3)/(x-4).
Die Infomation von dem Punkt konnte ich nur umsetzten, weil y0 = 0 ist. Gibt es auch Aufgabenstellungen, wo das nicht der Fall ist, oder kann ich davon ausgehen, dass immer y0 = 0 angegeben wird?
Und wie setze ich waagrechte Asymptoten in die Funktion um?  

Bezug
                        
Bezug
gebrochenrationale Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:21 Mo 16.03.2009
Autor: leduart

Hallo
Auch bei P(3,0) hast du ja noch viele Moeglichkeiten. Denn
[mm] \bruch{a(x-3}{x-4} [/mm] loest ja dein Problem.
also setzt du wenn nur 1 Pinkt, etwa (2,3) und die Ass bei x=4 gegeben ist an: [mm] y=\bruch{ax+b}{x-4} [/mm]
[mm] 3=\bruch{a*2+b}{2-4} [/mm]
-6=2a+b  jetzt kannst du a oder b frei aussuchen.
Wenn ein zweiter Punkt gegeben ist, setzest du den auch ein, und hast dann a und b eindeutig.
Eine waagerechte Ass. hast du nur, wenn der Nennergrad = Zaehlergrad ist. Das Verhaeltnis des Faktors der 2 hoechsten Potenzen ist dann die waagerechte Ass.
Fuer dein Beispiel [mm] y=\bruch{a(x-3}{x-4} [/mm]  waere also y=a die waagerechte Assymptote. in meinem beispiel waere also mit waagerechter Assymptote, y=4 senkrechte Ass. bei x=4 und Punkt (2,3) a=4, damit b=-14
und die fertige fkt
[mm] y=\bruch{4x-14}{x-4} [/mm]
Alles klar?
Gruss leduart

Bezug
                                
Bezug
gebrochenrationale Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:37 Mo 16.03.2009
Autor: miumiu

Super,ich hab's verstanden (^0^)~ danke!^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de