www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - gedämpfter harm oszillator
gedämpfter harm oszillator < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gedämpfter harm oszillator: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:00 So 11.07.2010
Autor: muhmuh

Aufgabe
Gegeben ist ein kleines Teilchen der Masse m, das an einer Feder mit der Federkonstante k angehängt ist. Das Teilchen
schwingt in einer Dimension, wobei die Rückstellkraft der Feder proportional zur Auslenkung sein soll. Außerdem wird es
durch Reibung mit der Dämpfungskonstante gedämpft.
a) Schreiben Sie die Differentialgleichung auf, die die Bewegung des Teilchens beschreibt.

b) Notieren Sie den ersten Integrationsschritt der numerischen Lösung dieses Anfangswertproblems in Matrixform bei
Anwendung des Crank-Nicholson-Verfahrens.

Hallo,

das ist eine aufgabe aus computational physics, ich schreibe darin morgen eine klausur, und komme damit irgendwie gerade nicht zurecht.

Die Differentialgleichung müsste ja folgende sein:

[mm] m\bruch{d²x}{dt²} [/mm] = -kx+alpha * [mm] \bruch{dx}{dt} [/mm]

Ich sollte nun eine Matrix aufstellen, die
das ganze in ein System gekoppelter dgls ersterordnung überführt.
ich hatte das davor bisher nur mit Massen ohne Reibungskraft, und da sah das z.b. für 3 Massen (Oszillatorkette) so aus:

[mm] w=\wurzel{\bruch{k}{m}} [/mm]
y= [mm] \vektor{w x_1 \\ dx_1/dt \\wx_2 \\dx_2/dt \\ wx_3 \\dx_3\dt} [/mm]
und damit
dy/dt = [mm] w*\pmat{ 0 & 1 & 0& 0&0 & 0\\ -1 & 0 &1 &0 &0 &0\\ 0 & 0 & 0& 1& 0&0\\ 1 & 0 & -2& 0& 0&0\\ 0 & 0 & 0& 0& 0&1\\ 0 & 0 & 1& 0& -1& 0}* [/mm] y

Das Verfahren, kann ich dann selbst anwenden., es geht mir nur um die ausgangsmatrix.

hat mir da jemand n tipp wie ich da ran gehe, stehe gerade auf dem schlauch da ein system von dgls 1.ordnung zu bekommen...

vielen dank,

lg
muhmuh


        
Bezug
gedämpfter harm oszillator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 So 11.07.2010
Autor: muhmuh

ok, hab noch etwas rummgerätselt und bin auf folgende idee gekommen:

also die dgl ist ja folgende:


x''-alpha/m x'+ k/m x = 0

ich habe mal w²= k/m definiert

und nun
x'= v(t) und q(t) = w² x

dann ergibt sich
v'= alpha/m v(t) - k/m x = alpha/m v(t) - q(t)
und q'(t) = w v(t)

und dann die matrix:
[mm] \vektor{q '\\ v'}= \pmat{ 0 & w²\\ -1 & alpha/m }\vektor{q(t) \\ v(t)} [/mm]


stimmt das so?

Bezug
                
Bezug
gedämpfter harm oszillator: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 So 11.07.2010
Autor: MathePower

Hallo muhmuh,

> ok, hab noch etwas rummgerätselt und bin auf folgende idee
> gekommen:
>  
> also die dgl ist ja folgende:
>  
>
> x''-alpha/m x'+ k/m x = 0
>  
> ich habe mal w²= k/m definiert
>  
> und nun
>  x'= v(t) und q(t) = w² x
>  
> dann ergibt sich
>  v'= alpha/m v(t) - k/m x = alpha/m v(t) - q(t)
>  und q'(t) = w v(t)


Das muss doch lauten: [mm]q'\left(t\right)=w^{\red{2}}*v\left(t\right)[/mm]


>  
> und dann die matrix:
>  [mm]\vektor{q '\\ v'}= \pmat{ 0 & w²\\ -1 & alpha/m }\vektor{q(t) \\ v(t)}[/mm]
>  


Schreibe den Exponenten in geschweiften Klammern: w^{2}


>
> stimmt das so?


Besser so:

[mm]\vektor{q '\\ v'}= \pmat{ 0 & w^{2} \\ -1 & \bruch{\alpha}{m}}\vektor{q(t) \\ v(t)}[/mm]


Gruss
MathePower

Bezug
                        
Bezug
gedämpfter harm oszillator: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:34 So 11.07.2010
Autor: muhmuh

ja hast recht, hatte das auch so,

nur hat er das ^2 nicht genommen, wenn man es direkt eingibt... also ueber strg 2 ... naja aber cool,dass es stimmt:)

danke:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de