www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - gehört Vektor zu Vektorraum?
gehört Vektor zu Vektorraum? < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gehört Vektor zu Vektorraum?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:11 Fr 12.09.2008
Autor: flille

Aufgabe
# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Finden Sie einen Vektor d [mm] \in [/mm] IR³ der im Falle dimU=2 nicht zu U gehört

ich habe die Vektoren a=(1,-2,2), b=(-2,5,1) und [mm] c=(-1,0,\alpha) [/mm]

nun habe ich für [mm] \alpha=-12 [/mm] festgestellt, das U die dim=2 hat.
Jetzt soll ich einen Vektor finden, der nicht zu U gehört, jedoch weiß ich nicht wie man da vorgeht.

MfG

        
Bezug
gehört Vektor zu Vektorraum?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:22 Fr 12.09.2008
Autor: angela.h.b.


> # Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Finden Sie einen Vektor d [mm]\in[/mm] IR³ der im Falle dimU=2
> nicht zu U gehört
>  ich habe die Vektoren a=(1,-2,2), b=(-2,5,1) und
> [mm]c=(-1,0,\alpha)[/mm]
>  
> nun habe ich für [mm]\alpha=-12[/mm] festgestellt, das U die dim=2
> hat.

Hallo,

dann weißt Du, daß der von den drei Vektoren a,b,c aufgespannte Raum hat also für [mm] \alpha=-12 [/mm] die Basis (a,b).

>  Jetzt soll ich einen Vektor finden, der nicht zu U gehört,
> jedoch weiß ich nicht wie man da vorgeht.

Du mußt nun einen Vektor finden, der nicht in dme von a und b aufgespannten Raum liegt, also einen Vektor d so, daß (a,b,d) linear unabhängig ist.

Tja, Du hast ja fstgestellt, daß für [mm] \alpha=-12 [/mm] der von (a,b,c) aufgespannte raum die Dimension 2 hat. Und sonst? für [mm] \alpha\not=-12? [/mm]

Gruß v. Angela

Bezug
                
Bezug
gehört Vektor zu Vektorraum?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:48 Fr 12.09.2008
Autor: flille

aso stimmt ;)

wenn ich nämlich am ende der zeilenstufenform eine nullzeile habe, ist das lgs vieldeutig lösbar und somit die vektoren linear abhängig in meinem fall ja bei /alpha=12

und für [mm] /alpha\not=12 [/mm] demnach linear unabhängig

also wäre ein vektor bspw. d=(-1,0,2) oder liege ich da falsch? denn dann ist ja die dim=3, aber in der aufgabenstellung ist ja dim=2 verlangt oder habe ich die aufgabe nich richtig verstanden?

vielen dank im voraus :p

Bezug
                        
Bezug
gehört Vektor zu Vektorraum?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:55 Fr 12.09.2008
Autor: angela.h.b.


> wenn ich nämlich am ende der zeilenstufenform eine
> nullzeile habe, ist das lgs vieldeutig lösbar und somit die
> vektoren linear abhängig in meinem fall ja bei /alpha=12

Ja.

>  
> und für [mm]/alpha\not=12[/mm] demnach linear unabhängig

Ja.

>  
> also wäre ein vektor bspw. d=(-1,0,2) oder liege ich da
> falsch?

Du liegst richtig.

>  denn dann ist ja die dim=3,

Ja.


aber in der

> aufgabenstellung ist ja dim=2 verlangt oder habe ich die
> aufgabe nich richtig verstanden?

Alles richtig verstanden.

Gruß v. Angela

Bezug
                                
Bezug
gehört Vektor zu Vektorraum?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:05 Fr 12.09.2008
Autor: flille

gut, dass freut mich aber ^^

irgendwie mach ich mir das immer schwerer, naja danke jedenfalls

Bezug
        
Bezug
gehört Vektor zu Vektorraum?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:31 Fr 12.09.2008
Autor: Adamantin

Oder anders ausgedrückt, du musst die Gleichung:

[mm]r*\vektor{1 \\ -2 \\ 2}+s*\vektor{-2 \\ 5 \\ 1}+t*\vektor{-1 \\ 0 \\ a}=0[/mm] so lösen, dass es nur eine triviale Lösung, nämlich r,s,t=0 gibt, dann gilt lin. Unabhängigkeit

ich hätte für a logischerweise [mm] \not=-12 [/mm]

Bezug
                
Bezug
gehört Vektor zu Vektorraum?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:55 Fr 12.09.2008
Autor: flille

sorry, aber ich verstehe nicht, wie ich das berechnen soll...

das habe ich doch schon im GS berechnet und festgestellt für welche [mm] \alpha [/mm] das GS linear abhängig bzw. linear unabhängig ist.

ich suche doch einen vektor, der im falle dimU=2 nicht zu gehört oder?!?

Bezug
                        
Bezug
gehört Vektor zu Vektorraum?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:01 Fr 12.09.2008
Autor: angela.h.b.


> sorry, aber ich verstehe nicht, wie ich das berechnen
> soll...
>  
> das habe ich doch schon im GS berechnet und festgestellt
> für welche [mm]\alpha[/mm] das GS linear abhängig bzw. linear
> unabhängig ist.
>  
> ich suche doch einen vektor, der im falle dimU=2 nicht zu
> gehört oder?!?

Hallo,

genau das Gleichungssystem, was Adamantin vorschlägt, hast Du mit dem Gaußverfahren gelöst. (er schrieb ja auch: "oder anders ausgedrückt")

Deine Matrix ist ja gerade die Koefizientenmatrix v. Adamantins GS.

Rang 3  bedeutet, daß das GS nur die triviale Lösung hat, also die Spalten linear unabhängig sind,

und für [mm] \alpha=12 [/mm] hattest Du lineare Abhängigkeit  (hier: Rang=2 )  errechnet.

Alles in Ordnung!

Gruß v. Angela





Bezug
                                
Bezug
gehört Vektor zu Vektorraum?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:06 Fr 12.09.2008
Autor: flille

okidoki

dann is alles klar soweit ;)

Bezug
                                
Bezug
gehört Vektor zu Vektorraum?: genau
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:06 Fr 12.09.2008
Autor: Adamantin

Ich wusste ja nicht, dass es nur die Lösung a=-12 gibt, dachte, es wäre vielleicht noch eine Zahl, daher habe ich dieses allgemeine Vorgehen noch einmal vorgeschlagen, kann ja sein, du weißt vorher noch keine Zahl, also müsstest du es über das LSG lösen.

Gelöst wird es, indem man zwei Variablen eliminiert und ich hatte am Ende die Zeile

[mm]-12t-at=0[/mm] übrig. Daraus folgt:

[mm]t*(-12-a)=0[/mm], woraus wiederrum folgt, das entweder t=0 [mm] \vee [/mm] a=-12 sein muss. Da du aber lin. unab. willst, muss a [mm] \not=-12 [/mm] sein, damit t=0 ist. Wenn a allerdings -12 wäre, dann kann t jeden Wert annehmen und das LSG hätte eine nichttriviale Lösung [mm] \not=0 [/mm]

Bezug
                                        
Bezug
gehört Vektor zu Vektorraum?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:14 Fr 12.09.2008
Autor: flille

ah ok, danke noch für den hinweis ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de