www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - gekoppelte, partielle DGLen
gekoppelte, partielle DGLen < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gekoppelte, partielle DGLen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:01 Do 20.10.2011
Autor: notinX

Aufgabe
[mm] $\frac{\partial f}{\partial y}=\frac{\partial g}{\partial z}$ [/mm]
[mm] $\frac{\partial g}{\partial y}=-\frac{\partial f}{\partial z}$ [/mm]
[mm] $\frac{\partial f}{\partial x}=\frac{\partial g}{\partial x}=0$ [/mm]

Hallo,

obige partielle, gekoppelte Differentialgleichungen sind gegeben. Ich bin mit der Theorie partieller Differentialgleichungen leider nicht so vertraut. Die einzige Information, die ich den Gleichungen entnehmen kann ist, dass $f(y,z)$ und $g(y,z)$ jeweils nur von y und z abhängen. Wie löst man sowas, bzw. gibt es überhaupt eine Lösung? Ich würde mich über einen Hinweis (wenn auch nur ein Stichwort, wonach ich suchen muss) freuen.

Gruß,

notinX

        
Bezug
gekoppelte, partielle DGLen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:41 Do 20.10.2011
Autor: Berieux

Hi!

> [mm]\frac{\partial f}{\partial y}=\frac{\partial g}{\partial z}[/mm]
>  
> [mm]\frac{\partial g}{\partial y}=-\frac{\partial f}{\partial z}[/mm]
>  
> [mm]\frac{\partial f}{\partial x}=\frac{\partial g}{\partial x}=0[/mm]
>  
> Hallo,
>  
> obige partielle, gekoppelte Differentialgleichungen sind
> gegeben. Ich bin mit der Theorie partieller
> Differentialgleichungen leider nicht so vertraut. Die
> einzige Information, die ich den Gleichungen entnehmen kann
> ist, dass [mm]f(y,z)[/mm] und [mm]g(y,z)[/mm] jeweils nur von y und z
> abhängen. Wie löst man sowas, bzw. gibt es überhaupt
> eine Lösung? Ich würde mich über einen Hinweis (wenn
> auch nur ein Stichwort, wonach ich suchen muss) freuen.
>  

Es gibt natürlich keine eindeutige Lösung. In den Variablen y, z sind das gerade die Cauchy-Riemann Differentialgleichungen (siehe []hier) . D.h. f,g eingeschränkt auf y,z bilden Real- bzw. Imaginärteil einer holomorphen Funktion. Andererseits liefert jede holomorphe Funktion, zusammen mit zwei Konstanten, eine Lösung. Ich geh jetzt mal davon aus, dass der Definitionsbereich [mm] \mathbb{R}^{3} [/mm] ist. Dann ist jede Lösung ein Element aus [mm] \mathcal{O} (\mathbb{C}) \times \mathbb{R}^{2} [/mm]. Wobei [mm] \mathcal{O} (\mathbb{C}) [/mm] die Algebra der ganzen holomorphen Funktionen ist.


Beste Grüße,
Berieux

> Gruß,
>  
> notinX


Bezug
                
Bezug
gekoppelte, partielle DGLen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:48 Sa 22.10.2011
Autor: notinX

Hi Berieux,

ja der Definitonsbereich ist [mm] $\mathbb{R}^{3}$. [/mm] Danke für den Hinweis, damit konnte ich das Problem lösen.

Gruß,

notinX


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de