www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - gemeinsame/ Randverteilung
gemeinsame/ Randverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gemeinsame/ Randverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:30 Sa 13.06.2015
Autor: questionpeter

Aufgabe
n [mm] \in \IN [/mm] Kneipengänger wollen eine Kneipe besuchen. Es wird angenommen, dass es [mm] m\in \IN [/mm] Kneipen gibt und jeder Kneipengänger unabhängig von den anderen eine Wahrschienlichkeit [mm] p_i>0 [/mm] die Kneipe [mm] i\in\{1,...,m\} [/mm] aufsucht, wobei [mm] \summe_{i=1}^{m}p_i=1. [/mm] Für [mm] i\in \{1,..,m\} [/mm] sei [mm] X_i [/mm] die Anzahl der Kneipengänger in Kneipe i.

(a) Berechne die gemeinsame Verteilung [mm] P_{(X_1,...,X_m)} [/mm] von [mm] X_1,...,X_m [/mm]

(b) Brechne die Randverteilung [mm] P_{X_i} [/mm] von [mm] X_i [/mm] für jedes [mm] i\in\{1,..,m\} [/mm]
    (i) einerseits aus der gemeinsamen Verteilung [mm] P_\{X_1,..,X_m\} [/mm] und
    (ii) andereseits direkt aus der Aufgabenstellung

(c) Berechne die gemeinsame VErteilung [mm] P_\{X_1,...,X_k\} [/mm] von [mm] X_1,...,X_k [/mm] für jedes [mm] k\in\{1,...,m\} [/mm]

Moin,

Ich sitze vor diese Aufgabe und bin total überfordert und hoffe auf eure Hilfe.

(a) die gemeinsame Verteilung gibt uns ja die Wahrscheinlichkeit von 2 Zufallsvariable z.B. X und Y aber als Paar, für die ein Wert angenommen wird.
(ich hoffe ich habe mich verständlich audgedrückt.)

[mm] X_i= [/mm] Anzahl der Kneipengänger in i

ist die gemeinsame Verteilung das produkt der Verteilungsfunktion?

(b) die Randverteilung von X und Y ist jeweils die Verteilung bei nur betrachtung von X bzw Y.
d.h. mit  [mm] X_i= [/mm] Anzahl der Kneipengänger und [mm] Y_i= [/mm] Kneipe i

Dann ist für die VErteilung von X: [mm] P(X=X_i,Y=Y_1)+P(X=X_i,Y=Y_2)+...+P(X=X_i,Y=Y_m) [/mm]

Und Verteilung von Y
[mm] P(X=X_1,Y=Y_i)+...+P(X=X_n,Y=Y_i) [/mm]

(c) ist das eigendlich nicht dasselber wie bei (a)?

Ich weiß nicht wirklich nicht wie ich am besten an diese Aufgabe herangehen soll.
Daher bin ich für jeden Hinweis dankbar. Dankeschön im voraus.



        
Bezug
gemeinsame/ Randverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:41 Di 16.06.2015
Autor: luis52

Moin, auf die Schnelle: Google mal multivariate hypergeometrische Verteilung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de