www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - gemischtquadratische gleichung
gemischtquadratische gleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gemischtquadratische gleichung: Frage
Status: (Frage) beantwortet Status 
Datum: 20:38 Mo 08.11.2004
Autor: silli

Hallo,
wer kann mir helfen die Bruchgleichung zu lösen.
Schreibe morgen eine mathearbeit und blicks nicht.
[mm] \bruch{x+1}{3x}- \bruch{2-x}{4x}= \bruch{x²+2}{6x} [/mm]
Danke
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
gemischtquadratische gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Mo 08.11.2004
Autor: Fugre


> Hallo,
>  wer kann mir helfen die Bruchgleichung zu lösen.
>  Schreibe morgen eine mathearbeit und blicks nicht.
>   [mm]\bruch{x+1}{3x}- \bruch{2-x}{4x}= \bruch{x²+2}{6x} [/mm]
>  
> Danke
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

Hallo Silli,

dann versuchen wir es mal.
Anfangen sollten wir mit dem Definitionsbereich. Dazu sollten wir nach Definitionslücken suchen,
die dann vorhanden sind, wenn ein Nenner 0 ist. Also überprüfen wir dies bei unser Gleichung
und sehen sofort, dass nur dann mindestens ein Zähler (hier sogar alle) 0 werden, wenn x=0 ist.
Für unseren Definitionsbereich bedeutet dies, dass er die gesamten reellen Zahlen beinhaltet außer der 0.

Wir schreiben: $ [mm] \|D [/mm] = [mm] \R \setminus [/mm] 0 $

Gut, jetzt wenden wir uns der eigentlichen Aufgabe zu und versuchen zuerst das,
was uns am meisten stört rauszuschmeißen, die Brüche.
Deshalb suchen wir nach dem kgV der Nenner und erhalten $ 12x $ als solches.

$ [mm] \bruch{x+1}{3x}- \bruch{2-x}{4x}= \bruch{x²+2}{6x} [/mm] $ also beide Seiten werden mit $ 12x $ multipliziert
$ [mm] 4(x+1)-3(2-x)=2(x^2+2) [/mm] $ dann fassen wir das ganze mal zusammen und bringen es auf eine Seite
$ [mm] 2x^2-7x+6=0 [/mm] $ nun teilen wir das ganze noch durch 2, damit wir es in die PQ-Formel einsetzen können
$ [mm] x^2-3,5x+3=0 [/mm] $

Nun wenden wir die PQ-Formel an und erhalten als mögliche Lösungen 1,5 und 2. Bei diesen Möglichkeiten überprüfen wir noch
schnell ob sie Teil des Definitionsbereiches sind und freuen uns, dass sie es sind.
Zu guter Letzt schreiben wir noch unser Ergebnis: $ [mm] \IL [/mm] = [mm] \{1,5 ; 2} [/mm] $

Ich hoffe, dass ich dir helfen konnte und wünsche dir viel Glück, aber noch mehr Erfolg in deiner Arbeit.

Liebe Grüße
Fugre

Bezug
                
Bezug
gemischtquadratische gleichung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:01 Mo 08.11.2004
Autor: silli

Danke, du bist einfach genial

Liebe Grüße
Silli

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de