www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - geometrische Folge...
geometrische Folge... < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geometrische Folge...: Anfänger,...Aufgabe, Frage
Status: (Frage) beantwortet Status 
Datum: 19:41 Do 21.09.2006
Autor: martinp89bc

Aufgabe
Bestimmen Sie die Folgenglieder [mm] g_6 [/mm] und [mm] g_8 [/mm] für eine geometrische Folge [mm] (g_n) [/mm] mit:

[mm] g_2=0,1 [/mm] ; [mm] g_4=2,5 [/mm]

Hallo nochmal,

erstmal Wow und vielen Dank für die schnelle Beantwortung, die ich hierher bisher als neues Mitglied erfahren hab, nun zur Frage:

Wie kann ich eine solche Aufgabe lösen?
(Bitte die jeweiligen Schritte angeben?

Hab gelesen, dass es man es auch mit dem GTR machen kann, wenn ja, wie wäre dies möglich?

Vielen Dank schonmal

und nochmal ein dickes Lob...

euer Martin

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
geometrische Folge...: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Do 21.09.2006
Autor: Teufel

Hallo nochmal!

Für eine geometrische Folge gilt: [mm] \bruch{a_{n}}{a_{n-1}}=q [/mm]
q ist immer Konstant. In Worten: Der Quotient aus einem beliebigen Folgenglied und dem davor ist immer die gleiche Zahl q. Also wenn du z.B. [mm] a_{3} [/mm] hast und [mm] a_{4} [/mm] berechnen willst, müsstest du [mm] a_{3}*q [/mm] rechnen.

Dieses q müsstets du erstmal berechnen. Das geht schon mit den beiden Folgendgliedern:

[mm] g_{2}=0,1 [/mm]
[mm] g_{4}=2,5 [/mm]

Also   muss gelten: [mm] g_{2}*q*q=g_{4} [/mm]
[mm] g_{2}*q²=g_{4} [/mm]
[mm] q²=\bruch{g_{4}}{g_{2}} [/mm]
[mm] q²=\bruch{2,5}{0,1}=\bruch{25}{1}=25 [/mm]
[mm] q=\pm [/mm] 5

Also wird bei aufsteigenden Folgengliedern immer *5 oder *(-5) gerechnet um das nächste Folgenglied zu erhalten.

0,1*5*5=2,5
und
0,1*(-5)*(-5)=2,5, würde auch gehen um von [mm] g_{2} [/mm] zu [mm] g_{4} [/mm] zu kommen.

Und wenn du ein Folgenglied zurück willst, müsstets du also :5 oder :(-5 rechnen)

[mm] a_{2}=0,1 [/mm]
[mm] a_{1}=\pm [/mm] 0,02

Und die explizite Vorschrift für eine geometrische Folge ist: [mm] a_{n}=a_{1}*q^{n-1} [/mm]

Eingesetzt:
[mm] a_{n}=0,02*5^{n-1} [/mm]
oder
[mm] a_{n}=-0,02*(-5)^{n-1} [/mm]

Etwas nervig mit den 2 Folgen, die auf diese beiden Folgenglieder zutreffen könnten, aber so ist das nunmal. Die Folgen sind eigentlich gleich, außer dass die untere das Vorzeichen immer wechselt. Aber das kann man sich ja auch vorstellen:

Die Folge ohne Vorzeichenwechselt ergibt immer nur was positives, genau wie das 2. und 4. vorgegebene Folgenglied.
Die Folge mit dem wechselnden Vorzeichen (alternierende Folge) hat als erstes Folgenglied ein negatives. Das 2. ist aber ebenfalls positiv, das 3. negative und das 4. negativ. Also könnte diese Folge genauso gut zutreffen.

Aber naja, du kannst nun wieder für n einmal 6 und einmal 8 einsetzen und für beide Folgen solltest du die selben postitiven Zahlen erhalten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de