www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - geraden
geraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:21 Mo 25.02.2008
Autor: mef

Aufgabe
welche besonderen geraden werden durch die parametergleichungen berschrieben.

[mm] a)g:\vec{x}=t*\vektor{1 \\ 0 \\ 1} [/mm]
[mm] b)g:\vec{x}=t* \vektor{0 \\ 1 \\ 1} [/mm]
[mm] c)g:\vec{x}=t* \vektor{1 \\ 1 \\ 1} [/mm]

hallo,
ich verstehe nicht so was ich so großartig zu a),b) und c)
machen soll.

MEIN ANSATZ...........
zu a) könnte ich sagen, dass der ortsvektor null ist, und
der y- wert auch null ist.
HABT IHR NOCH IDEEN WAS MAN NOCH ZU DER AUFGABE SCHREIBEN SOLLTe ??????????


danke im voraus

        
Bezug
geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 Mo 25.02.2008
Autor: angela.h.b.


> welche besonderen geraden werden durch die
> parametergleichungen berschrieben.
>  
> [mm]a)g:\vec{x}=t*\vektor{1 \\ 0 \\ 1}[/mm]
>  [mm]b)g:\vec{x}=t* \vektor{0 \\ 1 \\ 1}[/mm]
>  
> [mm]c)g:\vec{x}=t* \vektor{1 \\ 1 \\ 1}[/mm]
>  hallo,
>  ich verstehe nicht so was ich so großartig zu a),b) und
> c)
>  machen soll.
>  
> MEIN ANSATZ...........
>  zu a) könnte ich sagen, dass der ortsvektor null ist, und
> der y- wert auch null ist.
>  HABT IHR NOCH IDEEN WAS MAN NOCH ZU DER AUFGABE SCHREIBEN
> SOLLTe ??????????

Hallo,

ja, da fiele mir schon noch etwas ein.

Daß die Gerade durch den Koordinatenursprung geht, hast Du ja schon herausgefunden.

> und
> der y- wert auch null ist.

Was bedeutet es denn, daß auf der Geraden nur solche Punkte liegen, deren 2.Koordinate =0 ist.
In welcher Ebene verläuft die? (Hatten wir das nicht kürzlich?)

Wenn Du das herausgefunden hast, leg' die Ebene mal so, daß sie auf Deinem Papier liegt. Nun zeichne den Richtungsvektor [mm] \vektor{1 \\ 0 \\ 1} [/mm] auf, und anschließend die Gerade. Die ist schon eine besondere.

Gruß v. Angela

Bezug
                
Bezug
geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Mo 25.02.2008
Autor: mef

also,
die ebene ist die xz-ebene, da der y-wert 0 ist.
das besondere könnte wielleicht sein, dass alle punkte dieser geraden den y-wert gleich null haben.
die gerade sieht wie eine winkelhalbierende aus undzwar im 2. quadranten.


Bezug
                        
Bezug
geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 Mo 25.02.2008
Autor: angela.h.b.


>  die ebene ist die xz-ebene, da der y-wert 0 ist.

Genau.


>  die gerade sieht wie eine winkelhalbierende aus

Sie ist die Winkelhalbierende

> undzwar im
> 2. quadranten.

Du hast etwas falsch aufgemalt, oder Du zählst die Quadranten falsch.

Der erste Quadrant ist der, wo x und z beide positiv sind, und dann geht es gegen den Uhrzeigersinn weiter.

Bedenke, daß die Gerade nicht endlich ist. Die umgekehrte Richtung gehört auch noch dazu.

Also: die Winkelhalbierende im i. und III. Quadranten der xz-Ebene.

Gruß v. Angela



Bezug
                                
Bezug
geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:12 Mo 25.02.2008
Autor: mef

ja, meinte ich ja mit den quadranten.

viele dank nochmal
gruß mef

Bezug
                                        
Bezug
geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:19 Mo 25.02.2008
Autor: mef

danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de