www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - ggT Beweis
ggT Beweis < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ggT Beweis: Idee
Status: (Frage) beantwortet Status 
Datum: 16:32 Do 05.11.2009
Autor: Blaub33r3

Aufgabe
Seien a ≥ 1 und b ≥ 0 natürliche Zahlen und k*t = ggT (a,b). Dann gilt: [mm] ggT(\bruch{a}{k},\bruch{b}{k})=t. [/mm]

Hallo Leute,

Wie funktioniert dieser wahrscheinlich sehr triviale Beweis?
Leider fallen mir auch überhaupt keine Ansätze ein...

Angenommen d sei GGT von a,b dann ist d=k*t  und ich weiss, d|a und d|b
also folgt   d|a*b  als auch d|a+b    aber was hilft mir das?

Gruß Daniel

        
Bezug
ggT Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:17 Do 05.11.2009
Autor: derdickeduke

Versuch doch mal, dir das ganze an einem Beispiel klarzumachen.

Bsp: a=24; b=36; ggT(a,b)=12=3*4 [mm] \Rightarrow [/mm] k=3;t=4
[mm] \Rightarrow ggT(\bruch{24}{3};\bruch{36}{3})=ggT(8;12)=4 [/mm]

Nach dem Prinzip würde ich auch den Beweis aufbauen.
Du hast im Grunde eine Gleichung ggT=k*t
Tipp: Fallunterscheidung hilft weiter ;-)

Bezug
                
Bezug
ggT Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Fr 06.11.2009
Autor: Blaub33r3

Hey,..an einem Bsp. ist mir diese Funktionsweise dieser Aussagen auch klar, aber ich versteh nicht wie ich den Beweiß aufbauen soll, soll heißen mathematisch formulieren soll, und wo ich da eine Fallunterscheidung miteinbeziehen muss. Habt ihr vllt einen einleitenden Gedanken einer Herangehensweise?

Gruß BeeRe

Bezug
                        
Bezug
ggT Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Fr 06.11.2009
Autor: felixf

Hallo!

> Hey,..an einem Bsp. ist mir diese Funktionsweise dieser
> Aussagen auch klar, aber ich versteh nicht wie ich den
> Beweiß aufbauen soll, soll heißen mathematisch
> formulieren soll, und wo ich da eine Fallunterscheidung
> miteinbeziehen muss. Habt ihr vllt einen einleitenden
> Gedanken einer Herangehensweise?

Nun, das haengt davon ab wie der ggT bei euch definiert ist. Normalerweise ist er (bei ganzen Zahlen) als der positive groesste gemeinsame Teiler definiert.

Du musst also zeigen:

a) $t$ ist ein gemeinsamer Teiler von [mm] $\frac{a}{k}$ [/mm] und [mm] $\frac{b}{k}$; [/mm]

c) ist $d$ ein gemeinsamer Teiler von [mm] $\frac{a}{k}$ [/mm] und [mm] $\frac{b}{k}$, [/mm] so gilt $d [mm] \mid [/mm] t$.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de