www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - ggT existiert nicht
ggT existiert nicht < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ggT existiert nicht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:50 So 16.12.2012
Autor: rollroll

Aufgabe
Zeige, dass a=6 und b=4+2 [mm] \wurzel{-5} [/mm] in [mm] Z\wurzel{-5} [/mm] keinen ggT besitzen.

Ich weiß , dass a und b von 2 und [mm] 1-\wurzel{-5} [/mm] geteilt werden.
Und ich habe den Hinweis: Wenn a und b den ggT g hätten, dann müsste [mm] |g|^2 [/mm]  durch 12 teilbar sein. warum ist das so? Ich weiß, wenn g|g' --> |g| | |g'|

        
Bezug
ggT existiert nicht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:16 So 16.12.2012
Autor: rollroll

Hat niemand eine Idee?

Bezug
                
Bezug
ggT existiert nicht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 So 16.12.2012
Autor: rollroll

Oder muss ich i-wie die Irreduziblität ins Spiel bringen?

Bezug
        
Bezug
ggT existiert nicht: Standardansatz
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:23 So 16.12.2012
Autor: wieschoo

Hi,

normalerweise nimmt man an, dass ein einen gemeinsamen Teiler [mm]\alpha=\alpha_1+\alpha_2\sqrt{-5}[/mm] gibt.

Dann gibt es ein [mm]x[/mm] mit [mm]6=\alpha x[/mm]. Das gleiche Spiel treibt man auch mit der anderen Zahl. Und dann schlussfolgert man meistens, dass [mm]\alpha[/mm] nur eine Einheit sein kann und es somit keinen gemeinsamen Teiler geben kann. Ergo gibt es keine größten gemeinsamen Teiler.

Egal wie deine Lösung aussieht, dass läuft nur über die Norm.

Und zu dem Tipp.
Der größte gemeinsame Teiler $g$ teilt die 6. Dann hat [mm] $36=6^2$ [/mm] den Teiler [mm] $g^2$ [/mm] in jedem Fall.



Bezug
                
Bezug
ggT existiert nicht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:09 So 16.12.2012
Autor: rollroll

Ok, danke. Wie geht das denn mit der Norm, also die Norm von 2 ist doch 2, oder? Und bei komplexen Zahlen a+bi ist es [mm] \wurzel{a^2+b^2}, [/mm] aber wie wendet man das hier an?

Bezug
                        
Bezug
ggT existiert nicht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:37 Mo 17.12.2012
Autor: rollroll

Wäre auch noch nett, wenn mir jmd erklären könnte, wie man auf die 12 kommt... Danke schonmal!

Bezug
                                
Bezug
ggT existiert nicht: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Mo 17.12.2012
Autor: leduart

Hallo
bilde mal a*b wenn a und b  durch g teilbar sind dann muss ab durch g*g teilbar sein.
Gruss leduart

Bezug
                        
Bezug
ggT existiert nicht: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Mo 17.12.2012
Autor: leduart

Hallo
Wenn g a teilt  was ist dann mit |a| und |g|
Gruss leduart

Bezug
                                
Bezug
ggT existiert nicht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Mo 17.12.2012
Autor: rollroll

Also a*b= 24+12 [mm] \wurzel{-5}. [/mm]  Und wenn ggt=2, dann [mm] g^2=4 [/mm] und wenn ggT= [mm] 1-5\wurzel{-5}, [/mm] dann [mm] g^2= 6-2\wurzel{-5}Und [/mm] wenn g a teilt, dann muss auch |g| |a| teilen, oder? Aber wie bringt mich das jetzt weiter?


Bezug
                                        
Bezug
ggT existiert nicht: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Mo 17.12.2012
Autor: leduart

Hallo
du wolltest wissen woher die 12 für [mm] g^2 [/mm] kommt. was ist mit 12 und ab?
Gruss leduart

Bezug
                                                
Bezug
ggT existiert nicht: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:45 Mo 17.12.2012
Autor: rollroll

Ok, warum geht das aber nun nicht, dass a und b den ggT haben, also warum kann [mm] |g|^2 [/mm] nicht durch 12 teilbar sein?

Bezug
                                                        
Bezug
ggT existiert nicht: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mi 19.12.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de