www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - ggt
ggt < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ggt: ggt Ideal
Status: (Frage) beantwortet Status 
Datum: 23:00 Di 26.04.2011
Autor: katrin10

Aufgabe
Seien g, [mm] z_1, [/mm] ... [mm] z_k \in \IZ, k\ge [/mm] 2. Zeigen Sie:
[mm] g\in ggT(z_1, [/mm] ..., [mm] z_k) \gdw (g)=(z_1, [/mm] ..., [mm] z_k) [/mm]

Hallo,

bei der Hinrichtung habe ich gezeigt, dass [mm] (z_1, [/mm] ..., [mm] z_k)\subseteq(g) [/mm] gilt. Um zu zeigen, dass auch [mm] (z_1, [/mm] ..., [mm] z_k)\supseteq(g) [/mm] gilt, habe ich gesagt, dass [mm] g=\summe_{i=1}^{k}x_i z_i [/mm] für gewisse [mm] x_i \in \IZ [/mm] gilt, allerdings hatten wir in der Vorlesung nur, dass man mit dem euklidischen Algorithmus den ggT von zwei Zahlen bestimmen kann, also nur k=2 und nicht für k>2.

Bei der Rückrichtung habe ich gezeigt, dass [mm] g|z_i [/mm] für alle i=1, ...,k gilt. Damit g [mm] \IN ggT(z_1, [/mm] ..., [mm] z_k) [/mm] muss laut Definition des ggT zudem gelten: für alle [mm] c\in \IZ [/mm] mit [mm] c|z_i [/mm] für alle i=1, ...,k gilt h|g. Allerdings weiß ich nicht, wie ich dies zeigen soll.

Insgesamt weiß ich außerdem, dass die Äquivalenz für k=2 gilt.

Danke für eure Hilfe

        
Bezug
ggt: Antwort
Status: (Antwort) fertig Status 
Datum: 05:47 Mi 27.04.2011
Autor: felixf

Moin!

> Seien g, [mm]z_1,[/mm] ... [mm]z_k \in \IZ, k\ge[/mm] 2. Zeigen Sie:
>  [mm]g\in ggT(z_1,[/mm] ..., [mm]z_k) \gdw (g)=(z_1,[/mm] ..., [mm]z_k)[/mm]
>
> bei der Hinrichtung habe ich gezeigt, dass [mm](z_1,[/mm] ...,
> [mm]z_k)\subseteq(g)[/mm] gilt. Um zu zeigen, dass auch [mm](z_1,[/mm] ...,
> [mm]z_k)\supseteq(g)[/mm] gilt, habe ich gesagt, dass
> [mm]g=\summe_{i=1}^{k}x_i z_i[/mm] für gewisse [mm]x_i \in \IZ[/mm] gilt,
> allerdings hatten wir in der Vorlesung nur, dass man mit
> dem euklidischen Algorithmus den ggT von zwei Zahlen
> bestimmen kann, also nur k=2 und nicht für k>2.

Zeige erst per Induktion nach $k$, dass du $g = [mm] \sum_{i=1}^k x_i z_i$ [/mm] darstellen kannst mit [mm] $x_i \in \IZ$. [/mm] Dazu benutze, dass [mm] $ggT(z_1, ggT(z_2, \dots, z_k)) [/mm] = [mm] ggT(z_1, \dots, z_k)$ [/mm] ist.

Daraus folgt dann $g [mm] \in (z_1, \dots, z_k)$. [/mm]

Die andere Richtung, [mm] $z_1, \dots, z_k \in [/mm] (g)$, folgt aus der Definition des ggT.

> Bei der Rückrichtung habe ich gezeigt, dass [mm]g|z_i[/mm] für
> alle i=1, ...,k gilt. Damit g [mm]\IN ggT(z_1,[/mm] ..., [mm]z_k)[/mm] muss
> laut Definition des ggT zudem gelten: für alle [mm]c\in \IZ[/mm]
> mit [mm]c|z_i[/mm] für alle i=1, ...,k gilt h|g. Allerdings weiß
> ich nicht, wie ich dies zeigen soll.

Wenn $c [mm] \mid z_i$ [/mm] gilt, dann ist [mm] $z_i \in [/mm] (c)$. Da [mm] $z_1, \dots, z_n \in [/mm] (c)$, gilt $(g) = [mm] (z_1, \dots, z_n) \subseteq [/mm] (c)$. Was folgt daraus fuer $g$ und $c$?

LG Felix


Bezug
                
Bezug
ggt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 Mi 27.04.2011
Autor: katrin10

Vielen Dank für die Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de