www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - gleichmäßig stetig
gleichmäßig stetig < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichmäßig stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Fr 01.03.2019
Autor: rubi

Aufgabe
Prüfe die Funktion f: [mm] \IR \to \IR [/mm] mit [mm] f(x)=\bruch{x}{x^2+1} [/mm] auf gleichmäßige Stetigkeit.

Hallo zusammen,

gemäß des Schaubildes würde ich eine gleichmäßige Stetigkeit von f unterstellen, da die Steigung der Funktion nicht unendlich groß werden kann.

Meine Prüfung sieht bisher gemäß der Definition der glm. Stetigkeit so aus:

|f(x) - [mm] f(x_0)| [/mm] = [mm] |\bruch{x}{x^2+1}-\bruch{x_0}{x_0^2+1}| [/mm]

= [mm] |\bruch{x*x_0^2-x_0*x^2+x-x_0}{(x^2+1)(x_0^2+1)}| [/mm]

[mm] <=\bruch{|x*x_0|*|x-x_0|+|x-x_0|}{(x^2+1)(x_0^2+1)} [/mm]

Da [mm] |x-x_0| [/mm] < [mm] \delta [/mm] gelten soll schätze ich nun wie folgt ab:

[mm] ...<=\bruch{|x*x_0|*\delta+\delta}{(x^2+1)(x_0^2+1)} [/mm]

[mm] <=\delta*(1+|x|*|x_0|) [/mm] < [mm] \varepsilon [/mm]

Nun müsste das [mm] \delta [/mm] unabhängig von x und [mm] x_0 [/mm] und nur von [mm] \varepsilon [/mm] dargestellt werden können, damit glm. Stetigkeit vorliegt.

Kann mir jemand sagen, wie man diese Abschätzung fertigstellt, oder habe ich zwischendurch etwas falsch gemacht ?

Danke für eure Antworten.

Viele Grüße
Rubi

        
Bezug
gleichmäßig stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 Fr 01.03.2019
Autor: ChopSuey

Hallo,

es gilt: Ist $f:[a,b] [mm] \to \IR$ [/mm] stetig und auf $(a,b)$ differenzierbar und die Ableitung $f': (a,b) [mm] \to \IR$ [/mm] beschränkt, so ist $f$ Lipschitz-stetig mit Lipschitzkonstante $L = [mm] \sup_{x \in (a,b)} \vert [/mm] f'(x) [mm] \vert [/mm] $

Weiter gilt: Jede Lipschitzstetige Funktion ist gleichmäßig stetig.

Vielleicht hilft dir das.

LG,
ChopSuey



Bezug
                
Bezug
gleichmäßig stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:33 Fr 01.03.2019
Autor: rubi

Hallo ChopSuey,

danke für die Rückmeldung.

Darf ich die Antwort so verstehen, dass ich die glm. Stetigkeit auf meinem Wege gar nicht zeigen kann sondern über die Lipschitzstetigkeit gehen muss ?

Falls die Lipschitzstetigkeit nur der einfachere Weg ist, wäre ich trotzdem dankbar für einen Hinweis, wie ich es mit meiner Methode lösen kann.

Viele Grüße
Rubi


Bezug
                        
Bezug
gleichmäßig stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 12:18 Sa 02.03.2019
Autor: leduart

Hallo
du hast ja den richtigen Satz schon verwendet_"da die Steigung der Funktion nicht unendlich groß werden kann. " also gib ne Schranke für f' an und benutze [mm] f(x)=f'(x_0)*(x-x_0)+O((x-x_0)^2) [/mm]
Gruß leduart

Bezug
                        
Bezug
gleichmäßig stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 08:33 Mo 04.03.2019
Autor: fred97


> Hallo ChopSuey,
>
> danke für die Rückmeldung.
>
> Darf ich die Antwort so verstehen, dass ich die glm.
> Stetigkeit auf meinem Wege gar nicht zeigen kann sondern
> über die Lipschitzstetigkeit gehen muss ?

Nein, das musst Du nicht.

Mit Deinem Weg bekommst Du , bei obiger Funktion,  beides, wenn man sich geschickt anstellt:

Zunächst ist

(*)   [mm] $\frac{|x|}{x^2+1} \le \frac{1}{2}$ [/mm] für alle x.

Denn

[mm] $\frac{|x|}{x^2+1} \le \frac{1}{2} \gdw [/mm] 2|x| [mm] \le x^2+1 \gdw [/mm]  0 [mm] \le x^2-2|x|+1=(|x|-1)^2$. [/mm]

Nun hattest Du

$|f(x) -  [mm] f(x_0)| \le \frac{|x-x_0|(|x||x_0|+1)}{(x^2+1))(x_0^2+1)}=|x-x_0|(\frac{|x|}{x^2+1} \cdot \frac{|x_0|}{x_0^2+1}+\frac{1}{(x^2+1)(x_0^2+1)})$. [/mm]


Wegen [mm] \frac{1}{(x^2+1)(x_0^2+1)} \le [/mm] 1 und (*) bekommen wir

[mm] $|f(x)-f(x_0)| \le |x-x_0|(\frac{1}{2} \cdot \frac{1}{2} +1)=\frac{5}{4}|x-x_0| [/mm] $.



Einfacher und mit einer besseren Abschätzung geht es, wenn man den Mittelwertsatz anwendet:

Es is $|f'(x)|= [mm] \frac{|1-x^2|}{(x^2+1)^2} \le \frac{x^2+1}{(x^2+1)^2} =\frac{1}{(x^2+1)} \le [/mm] 1.$

Also:

[mm] $|f(x)-f(x_0)| \le |x-x_0|.$ [/mm]



>  
> Falls die Lipschitzstetigkeit nur der einfachere Weg ist,
> wäre ich trotzdem dankbar für einen Hinweis, wie ich es
> mit meiner Methode lösen kann.
>  
> Viele Grüße
>  Rubi
>  


Bezug
        
Bezug
gleichmäßig stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Sa 02.03.2019
Autor: Gonozal_IX

Hiho,

> Nun müsste das [mm]\delta[/mm] unabhängig von x und [mm]x_0[/mm] und nur
> von [mm]\varepsilon[/mm] dargestellt werden können, damit glm.
> Stetigkeit vorliegt.

das kann man auch, aber nur bis zu deiner letzten Ungleichung. Dort hast du zu grob abgeschätzt, so dass danach keine Abschätzung mehr zu einer Unabhängigkeit von [mm] x_0 [/mm] und x führt.
Im Allgemeinen ist es nicht immer einfach möglich, einen Ausdruck so abzuschätzen, dass er kleiner als [mm] $\varepsilon$ [/mm] wird, obwohl es bei glm Stetigkeit ja gehen muss. Manchmal sind alternative Wege da effektiver.

Bei der Aufgabe geht es dennoch recht einfach.

Nehmen wir mal den vorletzten Ausdruck:
[mm] $\bruch{|x\cdot{}x_0|\cdot{}\delta+\delta}{(x^2+1)(x_0^2+1)} [/mm] = [mm] \bruch{|x|}{(x^2+1)}\bruch{|x_0|}{(x_0^2+1)} \delta$ [/mm]

Nun begründe mal, dass der Faktor [mm] $\bruch{|x|}{(x^2+1)}$ [/mm]  beschränkt ist (durch was ist gar nicht so wichtig), indem du [mm] $\lim_{x\to 0} \bruch{|x|}{(x^2+1)}$ [/mm] und [mm] $\lim_{x\to \infty} \bruch{|x|}{(x^2+1)}$ [/mm] betrachtest.
Warum folgt daraus die Beschränktheit des Ausdrucks?

Und so kannst du das ganz ohne Ableitung etc begründen.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de