www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - gleichmäßige Stetigkeit
gleichmäßige Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichmäßige Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 Mo 02.04.2007
Autor: Monsterzicke

Aufgabe
Untersuche die Funktion f, g: ]0,1]--> [mm] \IR, [/mm]
f(x)= cos x/ x und f(x)= sinx/x auf gleichmäßige Stetigkeit.

Hallo! Ich bins mal wieder ;o) Das Semester hat wieder angefangen und erste Fragen tun sich auf....Es wäre schön, wenn ihr mir wie immer so schön helfen würdet!
Laut Definition ist eine Funktion ja genau dann stetig, wenn es ein [mm] \varepsilon [/mm] 0 aus allen [mm] \delta [/mm] >0 gibt, für das ein x,x0 [mm] \in [/mm] D mit                     [mm] |x-x0|<\delta [/mm]  existiert, für das gilt : |f(x)-f(x0| [mm] \ge \varepsilon0. [/mm]
Was fange ich jetzt damit an? (die Nullen sollen alle unten im Index stehen, weiß aber nicht, wie das geht)

        
Bezug
gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 Mo 02.04.2007
Autor: musicandi88

Hallo!!

Sei f eine Funktion und [mm] x_0\inD(f). [/mm] Die Funktion f heißt an der Stelle [mm] x_0 [/mm] stetig genau dann, wenn folgendes gilt:

Für jede beliebige Folge [mm] (x_n) [/mm] mit [mm] x_n\inD(f) [/mm] für alle [mm] n\in\IN, x_n\not=x_0 [/mm] für alle [mm] n\in\IN [/mm] und [mm] \limes_{n\rightarrow\infty}x_n=x_0 [/mm] gilt:

Die Folge der Funktionswerte [mm] (f(x_n)) [/mm] konvergiert und [mm] \limes_{n\rightarrow\infty}f(x_n)=f(x_0) [/mm]

[mm] \limes_{x\rightarrow\(x_0}f(x) [/mm] existiert

für de Funktion g(x):

[mm] g(x_n)=\bruch{cos(x_n)}{x_n} [/mm]

Nach den Grenzwertsätzen ist die Folge der Funktionssätze konvergent und es gilt:

[mm] \limes_{n\rightarrow\infty}g(x_n)=\limes_{n\rightarrow\infty}\bruch{cos(x_n)}{x_n}=\bruch{cos(x_0)}{x_0}=g(x_0) [/mm]

Wäre die Funktion an der Stelle [mm] x_0 [/mm] nicht stetig würde ein solches Verhalten nicht auftreten.

Müsste für f(x) analog funktionieren.

...Hab das Zeug aus meinem Skript Mathe LK 12. Ich hoffe, dass das ein vollständiger Beweis war... Bin mir auch net mehr 100% sicher

Mit lieben Grüßen
Andreas


Bezug
                
Bezug
gleichmäßige Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:52 Sa 07.04.2007
Autor: Monsterzicke

Das wäre ja dann die Stetigkeit, aber nicht die gleichmaäßige Stetigkeit???!!

Bezug
                        
Bezug
gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Sa 07.04.2007
Autor: Hund

Stimmt!

Gruß
Hund

Bezug
                        
Bezug
gleichmäßige Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:11 Sa 07.04.2007
Autor: musicandi88

Hallo!

oh.. tut mir Leid. Ich hatte ohl etwas ungenau gelesen.

Liebe Grüße und noch viel Erfolg
Andreas

Bezug
        
Bezug
gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:53 Sa 07.04.2007
Autor: viktory_hh

Hi, ich glaube es ist zu sehen dass die erste Funktion nicht gleichmäßig stetig sein kann, denn sie hat bei Null einen Pol und da das Interval offen ist, kann man immer eine Umgebung finden in der für [mm] \eps0 [/mm] die Gleichungen nicht mehr gelten.
Die zweite Funktion ist aber wahrscheinlich gleim. stetig. Es liegt daran dass sinx in Null in etwa gleiche Steigung wie x hat, und deswegen könnte man dass über die Reihendarstellung/Polynomdarstellung von x eine Abschätzung für die maximale Differenz von sinx und x finden.
Ich bin halt kein Mathematiker, deswegen kann ich die Beweise nicht so schön formal ausführen, aber ich hoffe meine Hinweise werden Dir weiter helfen.

bis dann

Bezug
                
Bezug
gleichmäßige Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:03 Sa 07.04.2007
Autor: Monsterzicke

Jo, danke! Ich studiere zwar Mathe, aber an der foralen Ausübung der Beweise bin ich bis jetzt auch immer gescheitert. Vielleicht kann mir jemand dabei helfen??

Bezug
                        
Bezug
gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 Sa 07.04.2007
Autor: Hund

Hallo,

also für die Aufgabe gibt es eine ziemlich einfache Lösung. Zunächst hast du ja das Intervall (0,1]. Auf dem sind ja deine beiden Funktionen auch stetig. Jetzt brauchst du nur bei beiden Funktionen x gegen 0 streben zu lassen und gucken was passiert. Wenn es einen Grenzwert gibt, ist sie gleichmäßig stetig, wenn nicht dann nicht.

Ich habe hier ein einfachen Satz verwendet den ihr in der Vorlesung vielleicht schon hattet. Ansonsten begründest du so:
1. Fall: Es gibt einen Grenzwert. Dann kannst du deine Funktion in 0 steig fortsetzten und hast eine stetige Funktion auf kompaktem Intervall, was ja gleichmäßige Stetigkeit impliziert.

2. Fall: Wäre die Funktion glm. stetig, so würde das Cauchy-Kriterium die Existenz eines Grenzwertes in 0 implizieren.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de