www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - gleichmäßige Stetigkeit
gleichmäßige Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichmäßige Stetigkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:27 Di 08.01.2013
Autor: steff34

Aufgabe
Ist die Funktion gleichmäßig stetig?

g: R+0--R (von den positiven reellen Zahlen mit Null in die reellen Zahlen)

g [mm] (x):=\wurzel{1+x^{4}} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Kann ich das mit dem Satz von Heine zeigen?

Da die positiven reellen Zahlen mit Null kein kompakter Intervall sind, ist es auch nicht gleichmäßig stetig?

Oder wie kann ich es sonst zeigen?

        
Bezug
gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Di 08.01.2013
Autor: Helbig


> Ist die Funktion gleichmäßig stetig?
>  
> g: R+0--R (von den positiven reellen Zahlen mit Null in die
> reellen Zahlen)
>  
> g [mm](x):=\wurzel{1+x^{4}}[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Kann ich das mit dem Satz von Heine zeigen?
>  
> Da die positiven reellen Zahlen mit Null kein kompakter
> Intervall sind, ist es auch nicht gleichmäßig stetig?

Das wäre die Umkehrung des Satzes: Ist $f$ stetig auf einem Kompaktum, so ist $f$ auch gleichmäßig stetig. Dies gilt aber im allgemeinen nicht. Ein Gegenbeispiel fällt Dir bestimmt ein.

>  
> Oder wie kann ich es sonst zeigen?

Zeige, $g'(x) [mm] \to \infty$ [/mm] für [mm] $x\to \infty$ [/mm] und wende den Mittelwertsatz an.

Gruß,
Wolfgang




Bezug
                
Bezug
gleichmäßige Stetigkeit: Mittelwertsatz haben wir noch
Status: (Frage) beantwortet Status 
Datum: 22:18 Di 08.01.2013
Autor: steff34

Aufgabe
MWS haben wir noch nicht gemacht.

Danke, MWS haben wir noch nicht.

Bezug
                        
Bezug
gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 00:45 Mi 09.01.2013
Autor: Marcel

Hallo,

es ist ja [mm] $g(x)=\sqrt{1+x^4}\,,$ [/mm] und Du willst zeigen, dass diese Funktion
nicht gleichmäßig stetig ist.

Zu zeigen ist also: Es existiert ein [mm] $\varepsilon_0$ [/mm] so, dass gilt:
Zu jedem [mm] $\delta [/mm] > 0$ existierten o.E. $0 [mm] \le x_\delta [/mm] < [mm] y_\delta$ [/mm]
derart, dass [mm] $|x_\delta-y_\delta|=y_\delta-x_\delta [/mm] < [mm] \delta$ [/mm] gilt, aber (bea.: [mm] $g\,$ [/mm] ist (streng)
monoton wachsend)
[mm] $$|g(x_\delta)-g(y_\delta)|=g(y_\delta)-g(x_\delta) \ge \varepsilon_0\,.$$ [/mm]

Offenbar gilt für [mm] $\red{1}\, \le [/mm] x < y$
[mm] $$\sqrt{1+y^4}-\sqrt{1+x^4}=\frac{y^4-x^4}{\sqrt{1+y^4}+\sqrt{1+x^4}} \red{\;\ge\;} \frac{y^4-x^4}{2y^2+2x^2}=\frac{1}{2}*(y^2-x^2)\,.$$ [/mm]

Was bringt das? Nun, prinzipiell ist es so, dass $t [mm] \mapsto t^2$ [/mm] (etwa auf [mm] $[0,\infty)$) [/mm]
eben nicht glm. stetig ist. (Betrachte dazu etwa [mm] $x_n:=n$ [/mm] und
[mm] $y_n:=x_n+\tfrac{1}{n}=n+\tfrac{1}{n}\,.$ [/mm] (Man könnte auch, mit einem $k [mm] \in \IN\,,$ [/mm] etwa [mm] $x_n:=n^k$ [/mm]
und dann [mm] $y_n:=x_n+\tfrac{1}{n}=n^k+\tfrac{1}{n}$ [/mm] betrachten.))

Anders gesagt: Wir haben die Nicht-glm. Stetigkeit von [mm] $g\,$ [/mm] auf die
Nicht-glm. Stetigkeit von $t [mm] \mapsto t^2$ [/mm] (auf [mm] $[0,\infty)$) [/mm] zurückgeführt.

P.S. Vor allem das [mm] $\red{\ge}$ [/mm] oben sollte von Dir noch begründet werden!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de