www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - gleichungssystem
gleichungssystem < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:41 So 08.06.2008
Autor: bonczi

Aufgabe
Gibt es ein [mm] \varepsilon [/mm] > 0, so dass für beliebig vorgegebene reelle zahlen u,v,w mit |u|,|v|,|w| < [mm] \varepsilon [/mm] das Gleichungssystem

            x + xyz = u
        y + ysin x = v
   z + 2x + 3z² = w

eine Lösung (x,y,z) [mm] \in \IR^{3} [/mm] besitzt?

also hallo erstmal. ich habe zu der aufgabe überhaupt keine idee, wie ich das lösen könnte, vielleicht könnte mir ja jemand einen tipp geben.

es müsste ja  
            |x + xyz | < [mm] \varepsilon [/mm]
        |y + ysin x | < [mm] \varepsilon [/mm]
  | z + 2x + 3z² |  < [mm] \varepsilon [/mm]       sein, aber wie macht man jetzt weiter?

lg bonczi  

        
Bezug
gleichungssystem: seltsam...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:03 So 08.06.2008
Autor: Al-Chwarizmi

sehr seltsame Fragestellung...

könntest du uns mitteilen, ob diese Frage aus irgendeinem
konkreten Bereich oder Anwendungsfall stammt ?

Vielleicht könnte das dabei helfen, einen Ansatz zu finden.


LG    al-Ch.  

Bezug
        
Bezug
gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 So 08.06.2008
Autor: Al-Chwarizmi


> Gibt es ein [mm]\varepsilon[/mm] > 0, so dass für beliebig
> vorgegebene reelle zahlen u,v,w mit |u|,|v|,|w| <
> [mm]\varepsilon[/mm] das Gleichungssystem
>  
> x + xyz = u
>          y + ysin x = v
>     z + 2x + 3z² = w
>  
> eine Lösung (x,y,z) [mm]\in \IR^{3}[/mm] besitzt?
>  also hallo erstmal. ich habe zu der aufgabe überhaupt
> keine idee, wie ich das lösen könnte, vielleicht könnte mir
> ja jemand einen tipp geben.
>  
> es müsste ja  
> |x + xyz | < [mm]\varepsilon[/mm]
> |y + ysin x | < [mm]\varepsilon[/mm]
>    | z + 2x + 3z² |  < [mm]\varepsilon[/mm]       sein, aber wie
> macht man jetzt weiter?
>  
> lg bonczi


Hi  bonczi,

Hier bin ich gerade nochmals.

Ich habe mir folgendes überlegt:  Es geht ja nur um die
Existenz eines (wenn auch winzigen)  positiven [mm] \varepsilon, [/mm]
so dass das Gleichungssystem für alle [mm] \vektor{u\\v\\w} [/mm] mit
[mm] u^2+v^2+w^2<\varepsilon^{2} [/mm]  lösbar ist.

Nun hat ja das System für  u=v=w=0  die offensichtliche
Lösung   x=y=z=0  (nebst eventuellen anderen, die uns
aber gar nicht interessieren müssen).

Die Frage nach der Auflösbarkeit des Systems für
benachbarte   [mm] \vektor{u\\v\\w} [/mm]  hat mit der Frage nach
einer eindeutigen Umkehrfunktion der Abbildung (*) in einer
Umgebung des Nullpunktes zu tun.

Ich vermute, dass dies euer aktuelles Thema ist.
Falls ja, sollten dir diese Erläuterungen weiter helfen...


LG    al-Chwarizmi



(*) Gemeint ist natürlich die Abbildung

               f:   [mm] \IR^3 \to \IR^3 [/mm]

                   [mm] \vektor{x\\y\\z} \mapsto \vektor{u\\v\\w} [/mm]

die durch das Gleichungssystem beschrieben wird.  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de